Does the Al substitution in C-S-H(I) change its mechanical property?

This study examines the influence of Al substitution for Si on the bulk modulus of calcium silicate hydrate I [C-S-H(I)], a structural analogue of C-S-H, by performing high-pressure synchrotron X-ray diffraction experiments in two C-S-H(I) samples: one a hydration product of alkali-activated slag and the other a synthetic C-S-H(I). The test result shows that not only the bulk modulus but also the incompressibility of the lattice parameters a, b, and c of two C-S-H(I) samples are very similar to each other, regardless of the Al substitution. This result may be due to the four-coordinated configuration of the substituted Al, which makes the dreierketten silicate chains maintain the same arrangement after the substitution.

[1]  X. Cong,et al.  29Si MAS NMR study of the structure of calcium silicate hydrate , 1996 .

[2]  Hjh Jos Brouwers,et al.  The hydration of slag, part 1: reaction models for alkali-activated slag , 2007 .

[3]  L. Butler,et al.  29Si and 27Al MAS‐NMR of NaOH‐Activated Blast‐Furnace Slag , 1994 .

[4]  Franz-Josef Ulm,et al.  Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties , 2004 .

[5]  H. Damme,et al.  Microscopic physical basis of the poromechanical behavior of cement-based materials , 2004 .

[6]  H. Manzano,et al.  Elastic properties of the main species present in Portland cement pastes , 2009 .

[7]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .

[8]  J. Hanson,et al.  Covalent Guest−Framework Interactions in Heavy Metal Sodalites: Structure and Properties of Thallium and Silver Sodalite , 1999 .

[9]  K. Scrivener,et al.  Hydration products of alkali activated slag cement , 1995 .

[10]  Raymond Jeanloz,et al.  Finite‐strain equation of state for high‐pressure phases , 1981 .

[11]  Stefano Merlino,et al.  The Crystal Structure of Tobermorite 14 Å (Plombierite), a C–S–H Phase , 2005 .

[12]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[13]  C. Dobson,et al.  Location of Aluminum in Substituted Calcium Silicate Hydrate (C‐S‐H) Gels as Determined by 29Si and 27Al NMR and EELS , 1993 .

[14]  E. Knittle Static Compression Measurements of Equations of State , 2013 .

[15]  Franz-Josef Ulm,et al.  Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale , 2007 .

[16]  C. Dobson,et al.  The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase , 1994 .

[17]  G. Gatta Does porous mean soft? On the elastic behaviour and structural evolution of zeolites under pressure , 2008 .

[18]  D. Roy Alkali-activated cements Opportunities and challenges , 1999 .

[19]  I. Richardson The nature of C-S-H in hardened cements , 1999 .

[20]  A. Atkinson,et al.  Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure , 2002 .

[21]  H. Taylor,et al.  Crystallographic data for the calcium silicates , 1956 .

[22]  Roland J.-M. Pellenq,et al.  Engineering the bonding scheme in C–S–H: The iono-covalent framework , 2008 .

[23]  F. Ulm,et al.  The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling , 2004 .

[24]  I. Hassan,et al.  The Crystal Structures of Sodalite-Group Minerals , 1984 .

[25]  S. Merlino,et al.  The real structure of tobermorite 11A: normal and anomalous forms, OD character and polytypic modifications , 2001 .

[26]  B. Cameron Reed,et al.  Linear least‐squares fits with errors in both coordinates , 1989 .

[27]  K. Scrivener,et al.  29Si and 27Al NMR study of alkali-activated slag , 2003 .

[28]  S. A. Hamid The crystal structure of the 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5] · 1H2O , 1981 .

[29]  E. Lesniewska,et al.  Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscale. , 2004, Ultramicroscopy.

[30]  Surendra P. Shah,et al.  A Reliable Technique to Determine the Local Mechanical Properties at the Nanoscale for Cementitious Materials , 2007 .

[31]  A. Nonat,et al.  Triple-Quantum Two-Dimensional 27Al Magic Angle Nuclear Magnetic Resonance Study of the Aluminum Incorporation in Calcium Silicate Hydrates , 1998 .

[32]  James M. Glossinger,et al.  A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source. , 2005, Journal of synchrotron radiation.

[33]  H. Manzano,et al.  Mechanical properties of crystalline calcium‐silicate‐hydrates: comparison with cementitious C‐S‐H gels , 2007 .

[34]  F. Ulm,et al.  On the use of nanoindentation for cementitious materials , 2003 .

[35]  A. Benesi,et al.  Silicon‐29 Magic Angle Spinning Nuclear Magnetic Resonance Study of Calcium Silicate Hydrates , 1989 .

[36]  C. Shi,et al.  Alkali-Activated Cements and Concretes , 2003 .