Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo

In this paper, we propose a super-resolution spectral estimation technique to quantify microvascular hemodynamics using optical microangiography (OMAG) based on optical coherence tomography (OCT). The proposed OMAG technique uses both amplitude and phase information of the OCT signals which makes it sensitive to the axial and transverse flows. The scanning protocol for the proposed method is identical to three-dimensional ultrahigh sensitive OMAG, and is applicable for in vivo measurements. In contrast to the existing capillary flow quantification methods, the proposed method is less sensitive to tissue motion and does not have aliasing problems due fast flow within large blood vessels. This method is analogous to power Doppler in ultrasonography and estimates the number of red blood cells passing through the beam as opposed to the velocity of the particles. The technique is tested both qualitatively and quantitatively by using OMAG to image microcirculation within mouse ear flap in vivo.

[1]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[2]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[3]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[4]  Ruikang K. Wang,et al.  Full range complex ultrahigh sensitive optical microangiography. , 2011, Optics letters.

[5]  Anthony Kuo,et al.  Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival. , 2012, Optics letters.

[6]  Martin F. Kraus,et al.  Split-spectrum amplitude-decorrelation angiography with optical coherence tomography , 2012, Optics express.

[7]  Ruikang K. Wang,et al.  Quantifying Optical Microangiography Images Obtained from a Spectral Domain Optical Coherence Tomography System , 2012, Int. J. Biomed. Imaging.

[8]  Ruikang K. Wang,et al.  Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo non-human primate eyes , 2012, Photonics West - Biomedical Optics.

[9]  R. Wang,et al.  Noncontact all-optical measurement of corneal elasticity. , 2012, Optics letters.

[10]  Ruikang K. Wang,et al.  A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography , 2006, Physics in medicine and biology.

[11]  Ruikang K. Wang,et al.  Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. , 2010, Optics letters.

[12]  Ruikang K. Wang,et al.  Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina. , 2011, Journal of biomedical optics.

[13]  Bernard Choi,et al.  High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography , 2012, Optics express.

[14]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[15]  Ruikang K. Wang,et al.  Eigendecomposition-Based Clutter Filtering Technique for Optical Microangiography , 2011, IEEE Transactions on Biomedical Engineering.

[16]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[17]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[18]  Mircea Mujat,et al.  Imaging of Optic Nerve Head Drusen: Improvements With Spectral Domain Optical Coherence Tomography , 2009, Journal of glaucoma.

[19]  R. Cobbold Foundations of Biomedical Ultrasound , 2006 .

[20]  J. Barton,et al.  Flow measurement without phase information in optical coherence tomography images. , 2005, Optics express.

[21]  Ruikang K. Wang,et al.  Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography. , 2006, Optics letters.

[22]  James G. Fujimoto,et al.  CHOROIDAL IMAGING USING SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY , 2012, Retina.

[23]  J M Rubin,et al.  Power Doppler expands standard color capability. , 1993, Diagnostic imaging.

[24]  M. Brezinski Optical Coherence Tomography: Principles and Applications , 2006 .

[25]  Rubin Jm,et al.  Power Doppler expands standard color capability. , 1993 .

[26]  M. Lafortune,et al.  Power Doppler sonography: basic principles and clinical applications in children , 2005, Pediatric Radiology.

[27]  Ruikang K. Wang,et al.  Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity. , 2010, Optics letters.

[28]  J. Izatt,et al.  In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. , 1997, Optics letters.

[29]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[30]  L. A. Paunescu,et al.  Ultrahigh-resolution optical coherence tomography in glaucoma. , 2005, Ophthalmology.

[31]  Zhongping Chen,et al.  Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. , 2000, Optics letters.

[32]  Ruikang K. Wang,et al.  In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography , 2011, Biomedical optics express.

[33]  H. Iijima,et al.  Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy. , 2001, American journal of ophthalmology.

[34]  Ruikang K. Wang,et al.  In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography , 2011, Lasers in surgery and medicine.

[35]  Ruikang K. Wang,et al.  Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography , 2011, Biomedical optics express.

[36]  Yuankai K. Tao,et al.  Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform. , 2008, Optics express.

[37]  Ruikang K. Wang,et al.  Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. , 2010, Optics express.

[38]  T. Yatagai,et al.  In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. , 2007, Optics express.

[39]  J. Cadzow Maximum Entropy Spectral Analysis , 2006 .

[40]  D L Kellogg,et al.  In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. , 2006, Journal of applied physiology.

[41]  Ruikang K. Wang,et al.  Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice , 2010, Journal of Neuroscience Methods.

[42]  J. D. de Boer,et al.  Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. , 2000, Optics letters.

[43]  Reza Motaghiannezam,et al.  Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography , 2012, Biomedical optics express.

[44]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[45]  J. Duker,et al.  Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. , 1996, Ophthalmology.

[46]  Ruikang K. Wang,et al.  High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography. , 2010, Journal of biomedical optics.

[47]  J. Fujimoto,et al.  Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. , 2006, Optics express.

[48]  Scott Barry,et al.  OCT methods for capillary velocimetry , 2012, Biomedical optics express.

[49]  Tin Aung,et al.  Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures. , 2008, American journal of ophthalmology.

[50]  Ruikang K. Wang,et al.  Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength. , 2007, Optics express.