Efficiently suppressed thermal conductivity in ZnO thin films via periodic introduction of organic layers

A combination of atomic and molecular layer deposition techniques is used to fabricate thin films of hybrid inorganic–organic superlattice structures with periodically repeating single layers of hydroquinone within a ZnO or (Zn0.98Al0.02)O framework. A significant reduction of up to one magnitude in the thermal conductivity of the films as evaluated with the time-domain thermoreflectance technique is observed upon introduction of the organic layers, resulting in a greatly improved thermoelectric performance.

[1]  Virginia R. Anderson,et al.  Alucone Alloys with Tunable Properties Using Alucone Molecular Layer Deposition and Al2O3 Atomic Layer Deposition , 2012 .

[2]  B. Lee,et al.  Rapid vapor-phase fabrication of organic-inorganic hybrid superlattices with monolayer precision. , 2007, Journal of the American Chemical Society.

[3]  G. Eesley,et al.  Transient thermoreflectance from thin metal films , 1986, Annual Meeting Optical Society of America.

[4]  S. Kearney,et al.  Criteria for Cross-Plane Dominated Thermal Transport in Multilayer Thin Film Systems During Modulated Laser Heating , 2010 .

[5]  O. Nilsen,et al.  Deposition of Organic- Inorganic Hybrid Materials by Atomic Layer Deposition , 2008, ECS Transactions.

[6]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[7]  R. Okazaki,et al.  Atomic layer deposition of Al-doped ZnO thin films , 2013 .

[8]  I. Terasaki,et al.  Thermoelectric characteristics of (Zn,Al)O/hydroquinone superlattices , 2013 .

[9]  Patrick E. Hopkins,et al.  Thermal Transport across Solid Interfaces with Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance , 2013 .

[10]  Jie Zhu,et al.  Ultralow thermal conductivity of atomic/molecular layer-deposited hybrid organic-inorganic zincone thin films. , 2013, Nano letters.

[11]  Maarit Karppinen,et al.  Atomic layer deposition of ZnO: a review , 2014 .

[12]  Koichi Eguchi,et al.  High‐temperature thermoelectric properties of (Zn1−xAlx)O , 1996 .

[13]  J. Alvarez-Quintana,et al.  Temperature dependent thermal conductivity of polycrystalline ZnO films , 2010 .

[14]  M. Karppinen,et al.  Organic-Inorganic Thin Films from TiCl4and 4-Aminophenol Precursors: A Model Case of ALD/MLD Hybrid-Material Growth?: Organic-Inorganic Hybrid Thin Films , 2014 .

[15]  K. Cai,et al.  Preparation and thermoelectric properties of Al-doped ZnO ceramics , 2003 .

[16]  Y. Romanyuk,et al.  Thermal conductivity of thermoelectric Al‐substituted ZnO thin films , 2013 .

[17]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[18]  H. Ågren,et al.  Thermoelectric Properties of Hybrid Organic-Inorganic Superlattices , 2012 .

[19]  D. Muller,et al.  Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. , 2014, Nature materials.

[20]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical Review B (Condensed Matter).

[21]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[22]  Gang Chen,et al.  Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. , 2008, The Review of scientific instruments.