A whirlwind tour of computational geometry

[1]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[2]  E. Gilbert Random Subdivisions of Space into Crystals , 1962 .

[3]  J. Milnor On the Betti numbers of real varieties , 1964 .

[4]  R. Thom Sur L'Homologie des Varietes Algebriques Réelles , 1965 .

[5]  Donald R. Chand,et al.  An Algorithm for Convex Polytopes , 1970, JACM.

[6]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[7]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[10]  R. Seidel A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .

[11]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[12]  M. E. Dyer,et al.  The Complexity of Vertex Enumeration Methods , 1983, Math. Oper. Res..

[13]  F. Frances Yao,et al.  Finding the Convex Hull of a Simple Polygon , 1983, J. Algorithms.

[14]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[15]  Dan E. Willard,et al.  New Data Structures for Orthogonal Range Queries , 1985, SIAM J. Comput..

[16]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[17]  Micha Sharir,et al.  Planning, geometry, and complexity of robot motion , 1986 .

[18]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[19]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[20]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1987, Discret. Comput. Geom..

[21]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[22]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[23]  Micha Sharir,et al.  Planar realizations of nonlinear davenport-schinzel sequences by segments , 1988, Discret. Comput. Geom..

[24]  Richard Cole,et al.  Visibility Problems for Polyhedral Terrains , 2018, J. Symb. Comput..

[25]  David P. Dobkin,et al.  Partitioning Space for Range Queries , 1989, SIAM J. Comput..

[26]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[27]  Robert L. Grossman,et al.  Visibility with a moving point of view , 1994, SODA '90.