A whirlwind tour of computational geometry
暂无分享,去创建一个
[1] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .
[2] E. Gilbert. Random Subdivisions of Space into Crystals , 1962 .
[3] J. Milnor. On the Betti numbers of real varieties , 1964 .
[4] R. Thom. Sur L'Homologie des Varietes Algebriques Réelles , 1965 .
[5] Donald R. Chand,et al. An Algorithm for Convex Polytopes , 1970, JACM.
[6] Ronald L. Graham,et al. An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..
[7] F. P. Preparata,et al. Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.
[8] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[9] Kevin Q. Brown,et al. Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..
[10] R. Seidel. A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .
[11] Michael Ben-Or,et al. Lower bounds for algebraic computation trees , 1983, STOC.
[12] M. E. Dyer,et al. The Complexity of Vertex Enumeration Methods , 1983, Math. Oper. Res..
[13] F. Frances Yao,et al. Finding the Convex Hull of a Simple Polygon , 1983, J. Algorithms.
[14] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[15] Dan E. Willard,et al. New Data Structures for Orthogonal Range Queries , 1985, SIAM J. Comput..
[16] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[17] Micha Sharir,et al. Planning, geometry, and complexity of robot motion , 1986 .
[18] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[19] Micha Sharir,et al. Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.
[20] Leonidas J. Guibas,et al. A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1987, Discret. Comput. Geom..
[21] Kenneth L. Clarkson,et al. New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..
[22] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[23] Micha Sharir,et al. Planar realizations of nonlinear davenport-schinzel sequences by segments , 1988, Discret. Comput. Geom..
[24] Richard Cole,et al. Visibility Problems for Polyhedral Terrains , 2018, J. Symb. Comput..
[25] David P. Dobkin,et al. Partitioning Space for Range Queries , 1989, SIAM J. Comput..
[26] G. C. Shephard,et al. Tilings and Patterns , 1990 .
[27] Robert L. Grossman,et al. Visibility with a moving point of view , 1994, SODA '90.