Quasi-Optimality of Adaptive Mixed FEMs for Non-selfadjoint Indefinite Second-Order Linear Elliptic Problems

Abstract The well-posedness and the a priori and a posteriori error analysis of the lowest-order Raviart–Thomas mixed finite element method (MFEM) has been established for non-selfadjoint indefinite second-order linear elliptic problems recently in an article by Carstensen, Dond, Nataraj and Pani (Numer. Math., 2016). The associated adaptive mesh-refinement strategy faces the difficulty of the flux error control in H ⁢ ( div , Ω ) {H({\operatorname{div}},\Omega)} and so involves a data-approximation error ∥ f - Π 0 ⁢ f ∥ {\lVert f-\Pi_{0}f\rVert} in the L 2 {L^{2}} norm of the right-hand side f and its piecewise constant approximation Π 0 ⁢ f {\Pi_{0}f} . The separate marking strategy has recently been suggested with a split of a Dörfler marking for the remaining error estimator and an optimal data approximation strategy for the appropriate treatment of ∥ f - Π 0 ⁢ f ∥ L 2 ⁢ ( Ω ) {\|f-\Pi_{0}f\|_{L^{2}(\Omega)}} . The resulting strategy presented in this paper utilizes the abstract algorithm and convergence analysis of Carstensen and Rabus (SINUM, 2017) and generalizes it to general second-order elliptic linear PDEs. The argument for the treatment of the piecewise constant displacement approximation u RT {u_{{\mathrm{RT}}}} is its supercloseness to the piecewise constant approximation Π 0 ⁢ u {\Pi_{0}u} of the exact displacement u. The overall convergence analysis then indeed follows the axioms of adaptivity for separate marking. Some results on mixed and nonconforming finite element approximations on the multiply connected polygonal 2D Lipschitz domain are of general interest.

[1]  Carsten Carstensen,et al.  Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems , 2014, Numerische Mathematik.

[2]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[3]  Hella Rabus,et al.  Quasi-optimal convergence of AFEM based on separate marking, Part II , 2015, J. Num. Math..

[4]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[5]  Amiya K. Pani,et al.  Convergence of an adaptive lowest-order Raviart–Thomas element method for general second-order linear elliptic problems , 2016 .

[6]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[7]  Ronald A. DeVore,et al.  Fast computation in adaptive tree approximation , 2004, Numerische Mathematik.

[8]  Michael Feischl,et al.  Adaptive FEM with Optimal Convergence Rates for a Certain Class of Nonsymmetric and Possibly Nonlinear Problems , 2012, SIAM J. Numer. Anal..

[9]  Carsten Carstensen,et al.  Error reduction and convergence for an adaptive mixed finite element method , 2006, Math. Comput..

[10]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[11]  Carsten Carstensen,et al.  Axioms of adaptivity , 2013, Comput. Math. Appl..

[12]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[13]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[14]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[15]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[16]  Carsten Carstensen,et al.  An optimal adaptive mixed finite element method , 2011, Math. Comput..

[17]  Carsten Carstensen,et al.  Axioms of Adaptivity with Separate Marking for Data Resolution , 2017, SIAM J. Numer. Anal..

[18]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[19]  Long Chen,et al.  Convergence and optimality of adaptive mixed finite element methods , 2010, Math. Comput..

[20]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[21]  Ronald H. W. Hoppe,et al.  Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems , 2010, Numerische Mathematik.