Application of the dressed time‐dependent density functional theory for the excited states of linear polyenes

Dressed Time‐Dependent Density Functional Theory (Maitra et al., J Chem Phys 2004, 120, 5932) is applied to selected linear polyenes. Limits of validity of the approximation are briefly discussed. The implementation strategy is described. Results for the 21Bu and 21Ag states of selected linear polyenes are presented and compared with accessible experimental and theoretical results. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009

[1]  S. Grimme,et al.  A COMBINATION OF KOHN-SHAM DENSITY FUNCTIONAL THEORY AND MULTI-REFERENCE CONFIGURATION INTERACTION METHODS , 1999 .

[2]  Kimihiko Hirao,et al.  Theoretical study of the π→π* excited states of linear polyenes: The energy gap between 11Bu+ and 21Ag− states and their character , 1998 .

[3]  Dennis R. Salahub,et al.  Dynamic polarizabilities and excitation spectra from a molecular implementation of time‐dependent density‐functional response theory: N2 as a case study , 1996 .

[4]  H. Ågren,et al.  Ab initio modeling of excited state absorption of polyenes , 2001 .

[5]  Nicholas C. Handy,et al.  On the determination of excitation energies using density functional theory , 2000 .

[6]  Aron Kuppermann,et al.  Electronic spectroscopy of polyatomic molecules by low-energy, variable-angle electron impact , 1979 .

[7]  Matthew L. Leininger,et al.  Systematic Study of Selected Diagonalization Methods for Configuration Interaction Matrices , 2001, J. Comput. Chem..

[8]  J. P. Doering,et al.  100 eV electron impact study of 1,3‐butadiene , 1981 .

[9]  Robert J. Cave,et al.  On the Vertical and Adiabatic Excitation Energies of the 21Ag State of trans-1,3-Butadiene , 2000 .

[10]  Stefan Grimme,et al.  Substantial errors from time-dependent density functional theory for the calculation of excited states of large pi systems. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  Michael J. Frisch,et al.  Toward a systematic molecular orbital theory for excited states , 1992 .

[12]  I. Ciofini,et al.  Accurate evaluation of valence and low-lying Rydberg states with standard time-dependent density functional theory. , 2007, The journal of physical chemistry. A.

[13]  B. Roos,et al.  Theoretical study of the electronic spectrum of all-trans-1,3,5,7-octatetraene , 1993 .

[14]  Yi-Lei Wang,et al.  Improving the TDDFT calculation of low-lying excited states for polycyclic aromatic hydrocarbons using the Tamm–Dancoff approximation , 2008 .

[15]  John C. Slater,et al.  The Theory of Complex Spectra , 1929 .

[16]  J. Catalán,et al.  On the photophysics of all-trans polyenes: hexatriene versus octatetraene. , 2006, The Journal of chemical physics.

[17]  Kieron Burke,et al.  Double excitations within time-dependent density functional theory linear response. , 2004, The Journal of chemical physics.

[18]  R. S. Mulliken Intensities of Electronic Transitions in Molecular Spectra VII. Conjugated Polyenes and Carotenoids , 1939 .

[19]  A. Masunov,et al.  Double excitations and state-to-state transition dipoles in π-π* excited singlet states of linear polyenes : Time-dependent density-functional theory versus multiconfigurational methods , 2008 .

[20]  Andreas Dreuw,et al.  How much double excitation character do the lowest excited states of linear polyenes have , 2006 .

[21]  Julien Preat,et al.  Assessment of PBE0 for Evaluating the Absorption Spectra of Carbonyl Molecules , 2006 .

[22]  R. Bartlett,et al.  Coupled‐cluster calculations of the excitation energies of ethylene, butadiene, and cyclopentadiene , 1996 .

[23]  P. Tavan,et al.  Electronic excitations in finite and infinite polyenes. , 1987, Physical review. B, Condensed matter.

[24]  E K U Gross,et al.  Excitations in time-dependent density-functional theory. , 2003, Physical review letters.

[25]  Fan Zhang,et al.  A dressed TDDFT treatment of the 21Ag states of butadiene and hexatriene , 2004 .

[26]  M. Petersilka,et al.  Excitation energies from time-dependent density-functional theory. , 1996 .

[27]  M. Head‐Gordon,et al.  Excitation Energies from Time-Dependent Density Functional Theory for Linear Polyene Oligomers: Butadiene to Decapentaene , 2001 .

[28]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[29]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 1999 .

[30]  Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes. , 2007, Physical chemistry chemical physics : PCCP.

[31]  Roland Lindh,et al.  Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene , 1993 .

[32]  M. Head‐Gordon,et al.  Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. , 2004, Journal of the American Chemical Society.

[33]  A. Kuppermann,et al.  Low energy, variable angle electron-impact excitation of 1,3,5-hexatriene☆ , 1977 .

[34]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[35]  Stefan Grimme,et al.  A TDDFT study of the lowest excitation energies of polycyclic aromatic hydrocarbons , 2003 .

[36]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[37]  T. Fujii,et al.  Two-photon absorption study of 1,3,5-hexatriene by cars and CSRS , 1985 .

[38]  I. Levy,et al.  Fluorescence from the 1 1Bu state of trans,trans‐1,3,5,7‐octatetraene in a free jet , 1984 .