Hamiltonian learning for quantum error correction

The efficient validation of quantum devices is critical for emerging technological applications. In a wide class of use-cases the precise engineering of a Hamiltonian is required both for the implementation of gate-based quantum information processing as well as for reliable quantum memories. Inferring the experimentally realized Hamiltonian through a scalable number of measurements constitutes the challenging task of Hamiltonian learning. In particular, assessing the quality of the implementation of topological codes is essential for quantum error correction. Here, we introduce a neural net based approach to this challenge. We capitalize on a family of exactly solvable models to train our algorithm and generalize to a broad class of experimentally relevant sources of errors. We discuss how our algorithm scales with system size and analyze its resilience towards various noise sources.

[1]  Paolo Zanardi,et al.  Fidelity analysis of topological quantum phase transitions , 2008, 0803.2243.

[2]  Xiaotong Ni,et al.  Neural Network Decoders for Large-Distance 2D Toric Codes , 2018, Quantum.

[3]  David Poulin,et al.  Subsystem surface codes with three-qubit check operators , 2012, Quantum Inf. Comput..

[4]  C. Castelnovo,et al.  Quantum topological phase transition at the microscopic level , 2007, 0707.2084.

[5]  Ronny Thomale,et al.  Method to identify parent Hamiltonians for trial states , 2018, Physical Review B.

[6]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2018 .

[7]  Xiao-Liang Qi,et al.  Determining a local Hamiltonian from a single eigenstate , 2017, Quantum.

[8]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[9]  Hai-Qing Lin,et al.  Scaling dimension of fidelity susceptibility in quantum phase transitions , 2008, 0807.3491.

[10]  Nathan Wiebe,et al.  Robust online Hamiltonian learning , 2012, TQC.

[11]  T. Osborne,et al.  Interplay of topological order and spin glassiness in the toric code under random magnetic fields , 2010, 1004.4632.

[12]  L. Vinet,et al.  A ‘missing’ family of classical orthogonal polynomials , 2010, 1011.1669.

[13]  Helmut G. Katzgraber,et al.  Error tolerance of topological codes with independent bit-flip and measurement errors , 2016, 1603.08729.

[14]  Simon J Devitt,et al.  Simulating open quantum systems: from many-body interactions to stabilizer pumping , 2011, 1104.2507.

[15]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[16]  Ian R. Petersen,et al.  A Quantum Hamiltonian Identification Algorithm: Computational Complexity and Error Analysis , 2016, IEEE Transactions on Automatic Control.

[17]  Shi-Jian Gu,et al.  Fidelity, dynamic structure factor, and susceptibility in critical phenomena. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[19]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[20]  Kenneth Rudinger,et al.  Compressed sensing for Hamiltonian reconstruction , 2014, 1410.3029.

[21]  Florian Marquardt,et al.  Reinforcement Learning with Neural Networks for Quantum Feedback , 2018, Physical Review X.

[22]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[23]  Paola Cappellaro,et al.  Hamiltonian identifiability assisted by single-probe measurement , 2016, 1609.09446.

[24]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[25]  E Solano,et al.  Many-body interactions with tunable-coupling transmon qubits. , 2014, Physical review letters.

[26]  Bryan K. Clark,et al.  Computational Inverse Method for Constructing Spaces of Quantum Models from Wave Functions , 2018, Physical Review X.

[27]  David Olaya,et al.  Superconducting nanocircuits for topologically protected qubits , 2009 .

[28]  Harry Buhrman,et al.  The European Quantum Technologies Roadmap , 2017, 1712.03773.

[29]  J. Rarity,et al.  Experimental quantum Hamiltonian learning , 2017, Nature Physics.

[30]  D. Cory,et al.  Hamiltonian learning and certification using quantum resources. , 2013, Physical review letters.

[31]  C. K. Andersen,et al.  Quantum parameter estimation with a neural network , 2017, 1711.05238.

[32]  David Poulin,et al.  Neural Belief-Propagation Decoders for Quantum Error-Correcting Codes. , 2018, Physical review letters.

[33]  Eyal Bairey,et al.  Learning a Local Hamiltonian from Local Measurements. , 2018, Physical review letters.

[34]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[35]  Helmut G. Katzgraber,et al.  Optimal error correction in topological subsystem codes , 2012, 1204.1838.

[36]  N. Maskara,et al.  Advantages of versatile neural-network decoding for topological codes , 2018, Physical Review A.

[37]  P. Zoller,et al.  Dissipative quantum error correction and application to quantum sensing with trapped ions , 2017, Nature Communications.

[38]  Giacomo Torlai,et al.  Neural Decoder for Topological Codes. , 2016, Physical review letters.

[39]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[40]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[41]  N. Wiebe,et al.  Tomography and generative training with quantum Boltzmann machines , 2016, 1612.05204.

[42]  P L Gould,et al.  Observation of a resonant four-body interaction in cold cesium Rydberg atoms. , 2011, Physical review letters.

[43]  Marco Picco,et al.  Strong disorder fixed points in the two-dimensional random-bond Ising model , 2006 .

[44]  Martin Suchara,et al.  Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.

[45]  N. Read,et al.  Random-bond Ising model in two dimensions: The Nishimori line and supersymmetry , 2001 .

[46]  N. Paunkovic,et al.  Ground state overlap and quantum phase transitions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Adam C. Whiteside,et al.  Towards practical classical processing for the surface code: Timing analysis , 2012, 1202.5602.

[48]  University of Toronto,et al.  Exchange interaction between three and four coupled quantum dots: Theory and applications to quantum computing , 2004 .

[49]  Paolo Zanardi,et al.  Quantum critical scaling of the geometric tensors. , 2007, Physical review letters.

[50]  V. Negnevitsky,et al.  Estimation of a general time-dependent Hamiltonian for a single qubit , 2016, Nature Communications.

[51]  A Honecker,et al.  Universality class of the Nishimori point in the 2D +/- J random-bond Ising model. , 2001, Physical review letters.

[52]  Jens Eisert,et al.  Reinforcement learning decoders for fault-tolerant quantum computation , 2018, Mach. Learn. Sci. Technol..

[53]  Hilbert J Kappen,et al.  Learning quantum models from quantum or classical data , 2018, Journal of Physics A: Mathematical and Theoretical.

[54]  Reger,et al.  Three-dimensional random-bond Ising model: Phase diagram and critical properties. , 1986, Physical review letters.

[55]  Todd A. Brun,et al.  Quantum Error Correction , 2019, Oxford Research Encyclopedia of Physics.

[56]  Joel Johansson,et al.  Quantum error correction for the toric code using deep reinforcement learning , 2018, Quantum.

[57]  Xiaotong Ni,et al.  Scalable Neural Network Decoders for Higher Dimensional Quantum Codes , 2017, 1710.09489.

[58]  Harry Buhrman,et al.  The quantum technologies roadmap: a European community view , 2018, New Journal of Physics.

[59]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[60]  Jun Zhang,et al.  Quantum Hamiltonian identification from measurement time traces. , 2014, Physical review letters.

[61]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[62]  Franco Nori,et al.  Coupling strength estimation for spin chains despite restricted access , 2008, 0810.2866.

[63]  NathanWiebe,et al.  Quantum bootstrapping via compressed quantum Hamiltonian learning , 2015 .

[64]  M S Kim,et al.  Hamiltonian tomography in an access-limited setting without state initialization. , 2008, Physical review letters.

[65]  Stefan Zohren,et al.  Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture , 2016, 1603.09521.

[66]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.