Charge-density response in layered metals: Retardation effects, generalized plasma waves, and their spectroscopic signatures

Transverse plasma polaritons and longitudinal plasmons describe the propagation of light-matter modes in an isotropic metal. However, in a layered metal the anisotropy of the bare electromagnetic response mixes the longitudinal and transverse excitations, making the distinction between polariton and plasmon blurred at small wavevectors, where retardation effects of the electromagnetic interactions become quantitatively relevant. In the usual Kubo approach for the linear response, this effect appears as a mixing between the density and the transverse current fluctuations, that requires to revise the standard RPA approach for density correlations where only the instantaneous Coulomb potential is included. In this paper we derive the general expression for the density and current correlation functions at long wavelength in a layered metal, showing that below a crossover scale set by the anisotropy of the plasma frequencies retardation effects make the dispersion of the generalized plasma modes different from the standard RPA result. In addition, the mixed longitudinal and transverse nature of these excitations reflects in a double-peak structure for the density response, that can be eventually accessed by means of high-momentum resolution electron-energy-loss or X-rays spectroscopies.

[1]  C. Castellani,et al.  Generalized Josephson plasmons in bilayer superconductors , 2023, Physical Review B.

[2]  J. Sethna,et al.  Jamming and unusual charge density fluctuations of strange metals , 2022, Nature communications.

[3]  P. Phillips,et al.  Probing the bulk plasmon continuum of layered materials through electron energy loss spectroscopy in a reflection geometry , 2022, Physical Review B.

[4]  C. Castellani,et al.  Generalized plasma waves in layered superconductors: A unified approach , 2021, Physical Review Research.

[5]  A. Cavalleri,et al.  Periodic dynamics in superconductors induced by an impulsive optical quench , 2021, Communications Physics.

[6]  S. Hayden,et al.  Detection of Acoustic Plasmons in Hole-Doped Lanthanum and Bismuth Cuprate Superconductors Using Resonant Inelastic X-Ray Scattering. , 2020, Physical review letters.

[7]  F. J. García de abajo,et al.  Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride , 2020, Nature Materials.

[8]  John David Jackson,et al.  Classical Electrodynamics , 2020, Nature.

[9]  C. Lane,et al.  Acoustic plasmons and conducting carriers in hole-doped cuprate superconductors , 2020, 2006.13424.

[10]  L. Benfatto,et al.  Non-linear Terahertz driving of plasma waves in layered cuprates , 2020, Nature Communications.

[11]  Cambridge,et al.  Parametric resonance of Josephson plasma waves: A theory for optically amplified interlayer superconductivity in YBa2Cu3O6+x , 2020, 2004.13049.

[12]  Gang Li,et al.  Doping evolution of the charge excitations and electron correlations in electron-doped superconducting La2−xCexCuO4 , 2019, npj Quantum Materials.

[13]  C. Dwyer,et al.  Crossover of Charge Fluctuations across the Strange Metal Phase Diagram , 2019, Physical Review X.

[14]  H. Yamase,et al.  Origin of high-energy charge excitations observed by resonant inelastic X-ray scattering in cuprate superconductors , 2019, Communications Physics.

[15]  F. Mauri,et al.  Position and momentum mapping of vibrations in graphene nanostructures , 2018, Nature.

[16]  H. Yamase,et al.  Origin of high-energy charge excitations observed by resonant inelastic X-ray scattering in cuprate superconductors , 2018, Communications Physics.

[17]  N. Brookes,et al.  Three-dimensional collective charge excitations in electron-doped copper oxide superconductors , 2018, Nature.

[18]  B. Uchoa,et al.  Anomalous density fluctuations in a strange metal , 2017, Proceedings of the National Academy of Sciences.

[19]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.

[20]  D. N. Basov,et al.  Polaritons in van der Waals materials , 2016, Science.

[21]  A. Cavalleri,et al.  Josephson plasmonics in layered superconductors , 2016 .

[22]  H. Yamase,et al.  Plasmon excitations in layered high-T c cuprates , 2016, 1601.08249.

[23]  Peter D. Johnson,et al.  Measurement of the dynamic charge response of materials using low-energy, momentum-resolved electron energy-loss spectroscopy (M-EELS) , 2015, 1509.04230.

[24]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[25]  M. Katsnelson,et al.  Collective charge excitations of strongly correlated electrons, vertex corrections, and gauge invariance , 2014, 1406.6515.

[26]  M. Katsnelson,et al.  Plasmons in strongly correlated systems: spectral weight transfer and renormalized dispersion. , 2014, Physical review letters.

[27]  Jeroen van den Brink,et al.  Resonant Inelastic X-ray Scattering Studies of Elementary Excitations , 2010, 1009.3630.

[28]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[29]  S. Savel'ev,et al.  Terahertz Josephson plasma waves in layered superconductors: spectrum, generation, nonlinear and quantum phenomena , 2009, 0903.2969.

[30]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[31]  M Zahid Hasan,et al.  Acoustic plasmons and doping evolution of Mott physics in resonant inelastic x-ray scattering from cuprate superconductors , 2008 .

[32]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[33]  Franco Nori,et al.  Analogues of nonlinear optics using terahertz Josephson plasma waves in layered superconductors , 2006 .

[34]  Giovanni Vignale,et al.  Quantum Theory of the Electron Liquid , 2005 .

[35]  E. Marino Applications of quantum field theory in condensed matter , 2004 .

[36]  H. Morawitz,et al.  Electronic Collective Modes and Superconductivity in Layered Conductors , 2003 .

[37]  C. Helm,et al.  Optical properties of layered superconductors near the Josephson plasma resonance , 2002, cond-mat/0207491.

[38]  Tomio Koyama,et al.  Theory of the superconducting phase and charge dynamics in intrinsic Josephson-junction systems: microscopic foundation for longitudinal Josephson plasma and phenomenological dynamical equations , 2000 .

[39]  N. Nagaosa Quantum Field Theory in Condensed Matter Physics , 1999 .

[40]  M. Machida,et al.  Dynamical Breaking of Charge Neutrality in Intrinsic Josephson Junctions: Common Origin for Microwave Resonant Absorptions and Multiple-branch Structures in the I-V Characterisitcs , 1999 .

[41]  Eugene I. Butikov,et al.  Parametric resonance , 1999, Comput. Sci. Eng..

[42]  A. Tsvetkov,et al.  Transverse optical plasmons in layered superconductors , 1996, cond-mat/9609155.

[43]  Zamora,et al.  Time-dependent equations for phase differences and a collective mode in Josephson-coupled layered superconductors. , 1994, Physical review. B, Condensed matter.

[44]  Dabrowski,et al.  c-axis response of YBa2Cu4O8: A pseudogap and possibility of Josephson coupling of CuO2 planes. , 1994, Physical review. B, Condensed matter.

[45]  N. Studart,et al.  Collective excitations in semiconductor superlattices , 1994 .

[46]  V. Duijn,et al.  Strong damping of the c-axis plasmon in high-Tc cuprate superconductors , 1994, cond-mat/9406087.

[47]  Bonn,et al.  Optical conductivity of c axis oriented YBa2Cu3O6.70: Evidence for a pseudogap. , 1993, Physical review letters.

[48]  Yasushi Ishii,et al.  Acoustic plasmons and cuprate superconductivity. , 1993, Physical review. B, Condensed matter.

[49]  Nakamura,et al.  Charge dynamics across the CuO2 planes in La2-xSrxCuO4. , 1992, Physical review letters.

[50]  Kresin,et al.  Layer plasmons and high-Tc superconductivity. , 1988, Physical review. B, Condensed matter.

[51]  A. Tselis,et al.  Theory of collective excitations in semiconductor superlattice structures , 1984 .

[52]  A. Fetter,et al.  Electrodynamics of a layered electron gas. II. Periodic array , 1974 .

[53]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[54]  D. Pines,et al.  The theory of quantum liquids , 1968 .

[55]  S. P. Cutler,et al.  Microscopy , 1873, The American journal of dental science.

[56]  J. Westgard Introduction to Electrodynamics , 1997 .

[57]  M. Apostol Plasma frequency of the electron gas in layered structures , 1975 .

[58]  D. Basov,et al.  c-axis response of YBa 2 Cu 408 : A pseudogap and possibility of Josephson coupling of Cu 02 planes , 2022 .