Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae

[1]  F. Van den Broeck,et al.  The adaptive roles of aneuploidy and polyclonality in Leishmania in response to environmental stress , 2023, EMBO reports.

[2]  J. Lukeš,et al.  A neo-functionalized homolog of host transmembrane protein controls localization of bacterial endosymbionts in the trypanosomatid Novymonas esmeraldas , 2023, Current Biology.

[3]  L. Valášek,et al.  Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment , 2023, Nature.

[4]  M. N. Malysheva,et al.  The Roles of Mosquitoes in the Circulation of Monoxenous Trypanosomatids in Temperate Climates , 2022, Pathogens.

[5]  Fabien Dutreux,et al.  Loss of Heterozygosity Spectrum Depends on Ploidy Level in Natural Yeast Populations , 2022, Molecular biology and evolution.

[6]  Mark C. Field,et al.  African trypanosome strategies for conquering new hosts and territories: the end of monophyly? , 2022, Trends in parasitology.

[7]  M. Llewellyn,et al.  Genome plasticity driven by aneuploidy and loss of heterozygosity in Trypanosoma cruzi , 2022, Microbial genomics.

[8]  V. Yurchenko,et al.  Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? , 2021, Pathogens.

[9]  F. Opperdoes,et al.  A New Model Trypanosomatid, Novymonas esmeraldas: Genomic Perception of Its “Candidatus Pandoraea novymonadis” Endosymbiont , 2021, mBio.

[10]  Benedikt G. Brink,et al.  Allele-specific assembly of a eukaryotic genome corrects apparent frameshifts and reveals a lack of nonsense-mediated mRNA decay , 2021, NAR genomics and bioinformatics.

[11]  Felipe A. Simão,et al.  BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes , 2021, Molecular biology and evolution.

[12]  C. Clayton,et al.  In vitro culture of freshly isolated Trypanosoma brucei brucei bloodstream forms results in gene copy-number changes , 2021, bioRxiv.

[13]  Y. Pérez-Pertejo,et al.  Reproduction in Trypanosomatids: Past and Present , 2021, Biology.

[14]  P. Monsieurs,et al.  High throughput single-cell genome sequencing gives insights into the generation and evolution of mosaic aneuploidy in Leishmania donovani , 2021, bioRxiv.

[15]  H. Drost,et al.  Sensitive protein alignments at tree-of-life scale using DIAMOND , 2021, Nature Methods.

[16]  F. Opperdoes,et al.  Genome Analysis of Endotrypanum and Porcisia spp., Closest Phylogenetic Relatives of Leishmania, Highlights the Role of Amastins in Shaping Pathogenicity , 2021, Genes.

[17]  J. Lukeš,et al.  Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses , 2021, Open Biology.

[18]  Guangyi Fan,et al.  Simple sequence repeats drive genome plasticity and promote adaptive evolution in penaeid shrimp , 2021, Communications Biology.

[19]  J. Lukeš,et al.  Characterization of a new cosmopolitan genus of trypanosomatid parasites, Obscuromonas gen. nov. (Blastocrithidiinae subfam. nov.). , 2021, European journal of protistology.

[20]  Sara L. Zimmer,et al.  The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions , 2021, Pathogens.

[21]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[22]  J. Mottram,et al.  Chromosomal assembly of the nuclear genome of the endosymbiont-bearing trypanosomatid Angomonas deanei , 2020, G3.

[23]  J. Ramirez,et al.  Trypanosoma cruzi Genome 15 Years Later: What Has Been Accomplished? , 2020, Tropical medicine and infectious disease.

[24]  Cédric Feschotte,et al.  RepeatModeler2 for automated genomic discovery of transposable element families , 2020, Proceedings of the National Academy of Sciences.

[25]  M. Schatz,et al.  GenomeScope 2.0 and Smudgeplots: Reference-free profiling of polyploid genomes , 2019, bioRxiv.

[26]  P. Kment,et al.  Insect trypanosomatids in Papua New Guinea: high endemism and diversity. , 2019, International journal for parasitology.

[27]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[28]  P. Keeling,et al.  The fate of obligate endosymbionts: reduction, integration, or extinction. , 2019, Current opinion in genetics & development.

[29]  M. Berriman,et al.  Global genome diversity of the Leishmania donovani complex , 2019, bioRxiv.

[30]  K. Brooks,et al.  Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania , 2019, bioRxiv.

[31]  C. Clayton Regulation of gene expression in trypanosomatids: living with polycistronic transcription , 2019, Open Biology.

[32]  Srinivas Aluru,et al.  Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems , 2019, 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[33]  D. Bartholomeu,et al.  Chromosomal copy number variation analysis by next generation sequencing confirms ploidy stability in Trypanosoma brucei subspecies , 2018, Microbial genomics.

[34]  G. Iraola,et al.  The Tritryps Comparative Repeatome: Insights on Repetitive Element Evolution in Trypanosomatid Pathogens , 2018, bioRxiv.

[35]  Dmitry Antipov,et al.  Versatile genome assembly evaluation with QUAST-LG , 2018, Bioinform..

[36]  F. Opperdoes,et al.  Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution , 2018, Parasitology.

[37]  H. Hashimi,et al.  Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree. , 2018, Trends in parasitology.

[38]  J. Votýpka,et al.  Trypanosomatid parasites in Austrian mosquitoes , 2018, PloS one.

[39]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[40]  Seth M. Barribeau,et al.  The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees , 2018, PloS one.

[41]  D. Greig,et al.  Modeling the contributions of chromosome segregation errors and aneuploidy to Saccharomyces hybrid sterility , 2018, Yeast.

[42]  Brian Bushnell,et al.  BBMerge – Accurate paired shotgun read merging via overlap , 2017, PloS one.

[43]  F. Ayala,et al.  Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid , 2017, Proceedings of the National Academy of Sciences.

[44]  Brent S. Pedersen,et al.  Mosdepth: quick coverage calculation for genomes and exomes , 2017, bioRxiv.

[45]  Mark Blaxter,et al.  BlobTools: Interrogation of genome assemblies , 2017, F1000Research.

[46]  V. Yurchenko,et al.  Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). , 2017, Folia parasitologica.

[47]  Sara L. Zimmer,et al.  A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts , 2017, PLoS neglected tropical diseases.

[48]  F. Opperdoes,et al.  Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila , 2017, PloS one.

[49]  Sebastian Deorowicz,et al.  KMC 3: counting and manipulating k‐mer statistics , 2017, Bioinform..

[50]  D. Stark,et al.  Isolation of Novel Trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) Provides Support for a Gondwanan Origin of Dixenous Parasitism in the Leishmaniinae , 2017, PLoS neglected tropical diseases.

[51]  J. Chapman,et al.  Development of a toolbox to dissect host-endosymbiont interactions and protein trafficking in the trypanosomatid Angomonas deanei , 2016, BMC Evolutionary Biology.

[52]  Yan Li,et al.  SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation , 2016, PloS one.

[53]  P. Leprohon,et al.  Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance , 2016, F1000Research.

[54]  Tereza Ševčíková,et al.  An Unprecedented Non-canonical Nuclear Genetic Code with All Three Termination Codons Reassigned as Sense Codons , 2016, Current Biology.

[55]  Daniel Mapleson,et al.  KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies , 2016, bioRxiv.

[56]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[57]  Mark C. Field,et al.  Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania , 2016, Scientific Reports.

[58]  J. Lukeš,et al.  Diversity of Trypanosomatids in Cockroaches and the Description of Herpetomonas tarakana sp. n. , 2016, The Journal of eukaryotic microbiology.

[59]  J. Lukeš,et al.  Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era , 2015, Memorias do Instituto Oswaldo Cruz.

[60]  Panos Kalnis,et al.  Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data , 2015, Bioinform..

[61]  B. Lemaître,et al.  Infection Dynamics and Immune Response in a Newly Described Drosophila-Trypanosomatid Association , 2015, mBio.

[62]  F. Opperdoes,et al.  Leptomonas seymouri: Adaptations to the Dixenous Life Cycle Analyzed by Genome Sequencing, Transcriptome Profiling and Co-infection with Leishmania donovani , 2015, PLoS pathogens.

[63]  A. T. Vasconcelos,et al.  Chromosomal copy number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains , 2015, BMC Genomics.

[64]  Jiyuan An,et al.  J-Circos: an interactive Circos plotter , 2015, Bioinform..

[65]  J. Berman,et al.  Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. , 2014, Cold Spring Harbor perspectives in medicine.

[66]  M. N. Malysheva,et al.  Molecular revision of the genus Wallaceina. , 2014, Protist.

[67]  G. McVean,et al.  Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications , 2014, Nature Genetics.

[68]  J. Lukeš,et al.  Evolution of parasitism in kinetoplastid flagellates. , 2014, Molecular and biochemical parasitology.

[69]  Tetsuya Hayashi,et al.  Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads , 2014, Genome research.

[70]  J. Derisi,et al.  A Draft Genome of the Honey Bee Trypanosomatid Parasite Crithidia mellificae , 2014, PloS one.

[71]  Rhys A. Farrer,et al.  Chromosomal Copy Number Variation, Selection and Uneven Rates of Recombination Reveal Cryptic Genome Diversity Linked to Pathogenicity , 2013, PLoS genetics.

[72]  Eugene V Koonin,et al.  Genome reduction as the dominant mode of evolution , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[73]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[74]  David W. Cheung,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[75]  H. Imamura,et al.  Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. , 2012, Trends in parasitology.

[76]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[77]  D. Biron,et al.  Extreme reduction and compaction of microsporidian genomes. , 2011, Research in microbiology.

[78]  Aaron R. Quinlan,et al.  BamTools: a C++ API and toolkit for analyzing and managing BAM files , 2011, Bioinform..

[79]  S. Flibotte,et al.  Widespread, focal copy number variations (CNV) and whole chromosome aneuploidies in Trypanosoma cruzi strains revealed by array comparative genomic hybridization , 2011, BMC Genomics.

[80]  José B. Pereira-Leal,et al.  Loss of Genetic Redundancy in Reductive Genome Evolution , 2011, PLoS Comput. Biol..

[81]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[82]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[83]  J. Lukeš,et al.  Two New Species of Trypanosomatid Parasites Isolated from Heteroptera in Costa Rica , 2010, The Journal of eukaryotic microbiology.

[84]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[85]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[86]  Simon Croft,et al.  Kinetoplastids: related protozoan pathogens, different diseases. , 2008, The Journal of clinical investigation.

[87]  J. Lukeš,et al.  Sergeia podlipaevi gen. nov., sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of biting midges (Ceratopogonidae, Diptera). , 2007, International journal of systematic and evolutionary microbiology.

[88]  B. Dujon,et al.  Highly Variable Rates of Genome Rearrangements between Hemiascomycetous Yeast Lineages , 2006, PLoS genetics.

[89]  Daniel Nilsson,et al.  Comparative Genomics of Trypanosomatid Parasitic Protozoa , 2005, Science.

[90]  A. Saah,et al.  The discovery and preliminary characterization of a novel trypanosomatid parasite from Rattus norvegicus and stray dogs from Alexandria, Egypt. , 1988, Annals of tropical medicine and parasitology.

[91]  A. Frolov,et al.  Geographical distribution and host range of monoxenous trypanosomatid Crithidia brevicula (Frolov et Malysheva, 1989) in the northern regions of Eurasia , 2020 .

[92]  M. N. Malysheva,et al.  Life cycle, ultrastructure and host-parasite relationships of Angomonas deanei (Kinetoplastea: Trypanosomatidae) in the blowfly Lucilia sericata (Diptera: Calliphoridae) , 2020 .

[93]  BlobTools: Interrogation of genome assemblies [version 1; referees: 2 approved with reservations] , 2018 .

[94]  Frédéric Bringaud « Les trypanosomatides sous les feux du séquençage / Comparative genomics of trypanosomatid parasitic protozoa » , 2015 .

[95]  J. Lukeš,et al.  Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. , 2013, Trends in parasitology.

[96]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..