Evapotranspiration over a camelina crop at Maricopa, Arizona ☆
暂无分享,去创建一个
Kelly R. Thorp | Douglas J. Hunsaker | Andrew N. French | T. R. Clarke | T. Clarke | A. French | K. Thorp | D. Hunsaker
[1] G. Fitzgerald,et al. WHEAT IRRIGATION MANAGEMENT USING MULTISPECTRAL CROP COEFFICIENTS: I. CROP EVAPOTRANSPIRATION PREDICTION , 2007 .
[2] Helmut Wagentristl,et al. Agronomic evaluation of camelina genotypes selected for seed quality characteristics , 2007 .
[3] H. Saucke,et al. Weed suppression in mixed cropped grain peas and false flax (Camelina sativa) , 2006 .
[4] K. Falk,et al. Agronomic and seed quality evaluation of Camelina sativa in western Canada , 2006 .
[5] I. A. Walter,et al. The ASCE standardized reference evapotranspiration equation , 2005 .
[6] Terry A. Howell,et al. A Depth Control Stand for Improved Accuracy with the Neutron Probe , 2003 .
[7] T. Schmugge,et al. Surface energy fluxes over El Reno, Oklahoma, using high‐resolution remotely sensed data , 2003 .
[8] J. Zubr. Qualitative variation of Camelina sativa seed from different locations , 2003 .
[9] W. Artz,et al. Camelina oil and its unusual cholesterol content , 2002 .
[10] Z. Su. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .
[11] John M. Norman,et al. Estimating Fluxes on Continental Scales Using Remotely Sensed Data in an Atmospheric–Land Exchange Model , 1999 .
[12] A. Holtslag,et al. A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .
[13] D. Dierig,et al. Lesquerella seed production: Water requirement and management , 1998 .
[14] L. Angelini,et al. Variation in agronomic characteristics and seed oil composition of new oilseed crops in central Italy. , 1997 .
[15] Josef Zubr,et al. Oil-seed crop: Camelina sativa , 1997 .
[16] Martha C. Anderson,et al. A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing , 1997 .
[17] J. Norman,et al. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature [Agric. For. Meteorol., 77 (1995) 263–293]☆ , 1996 .
[18] D. Robinson,et al. Early Iron Age agriculture: archaeobotanical evidence from an underground granary at Overbyg»rd in northern Jutland, Denmark , 1996 .
[19] J. Norman,et al. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .
[20] Jean L. Steiner,et al. PRECISION OF NEUTRON SCATTERING AND CAPACITANCE TYPE SOIL WATER CONTENT GAUGES FROM FIELD CALIBRATION , 1995 .
[21] Jielun Sun,et al. Determination of Surface Fluxes from the Surface Radiative Temperature , 1995 .
[22] William M. Breene,et al. Some compositional properties of camelina (camelina sativa L. Crantz) seeds and oils , 1995 .
[23] D. Post,et al. Mapping and Characterization of the Soils on the University of Arizona Maricopa Agricultural Center , 1988 .
[24] Ray D. Jackson,et al. Evapotranspiration calculated from remote multispectral and ground station meteorological data , 1985 .
[25] Jerry L. Hatfield,et al. Evaluation of canopy temperature—evapotranspiration models over various crops , 1984 .
[26] James L. Wright,et al. New Evapotranspiration Crop Coefficients , 1982 .
[27] G.J.R. Soer. Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures , 1980 .
[28] S. Idso,et al. Wheat canopy temperature: A practical tool for evaluating water requirements , 1977 .
[29] Norman J. Rosenberg,et al. A Resistance Model to Predict Evapotranspiration and Its Application to a Sugar Beet Field1 , 1973 .
[30] C. Priestley,et al. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .
[31] Marvin E. Jensen,et al. Water consumption by agricultural plants , 1968 .
[32] J. P. Kerr,et al. Effect of Viewing Angle on Canopy Temperature Measurements with Infrared Thermometers1 , 1967 .
[33] Glenn J. Fitzgerald,et al. ENERGY BALANCE ESTIMATION OF EVAPOTRANSPIRATION FOR WHEAT GROWN UNDER VARIABLE MANAGEMENT PRACTICES IN CENTRAL ARIZONA , 2007 .
[34] H. Paulsen. Mischfruchtanbausysteme mit Ölpflanzen im ökologischen Landbau1. Ertragsstruktur des Mischfruchtanbaus von Leguminosen oder Sommerweizen mit Leindotter (Camelina sativa L. Crantz) , 2007 .
[35] H. Paulsen. Organic mixed cropping systems with oilseeds: 1. Yields of mixed cropping systems of legumes or spring wheat with false flax (Camelina sativa L. Crantz). , 2007 .
[36] B. Rice,et al. Evaluation of Camelina sativa oil as a feedstock for biodiesel production , 2005 .
[37] Glenn J. Fitzgerald,et al. COTTON IRRIGATION SCHEDULING USING REMOTELY SENSED AND FAO-56 BASAL CROP COEFFICIENTS , 2005 .
[38] J. A. Tolk,et al. Comparison of five models to scale daily evapotranspiration from one-time-of-day measurements , 2005 .
[39] William P. Kustas,et al. Mapping surface energy fluxes with radiometric temperature. , 2003 .
[40] F. L. Goffic,et al. La cameline : Camelina sativa (L.) Crantz : une opportunité pour l'agriculture et l'industrie européennes , 1999 .
[41] L. S. Pereira,et al. Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .
[42] Steven R. Evett,et al. Evapotranspiration by Soil Water Balance Using TDR and Neutron Scattering , 1993 .
[43] H. Lenschow,et al. Probing the atmospheric boundary layer , 1986 .
[44] B. Séguin,et al. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data , 1983 .
[45] R. Jackson. Canopy Temperature and Crop Water Stress , 1982 .
[46] Daniel Hillel,et al. Advances in irrigation , 1982 .
[47] Wilfried Brutsaert,et al. Evaporation into the atmosphere : theory, history, and applications , 1982 .
[48] J. Doorenbos,et al. Guidelines for predicting crop water requirements , 1977 .
[49] G. Campbell,et al. An Introduction to Environmental Biophysics , 1977 .
[50] C. L. Wiegand,et al. Combination equations used to calculate evaporation and potential evaporation. , 1970 .