A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation

[1]  Wolters Carsten,et al.  EEG source analysis of epileptiform activity using a 1mm anisotropic hexahedra finite element head model , 2010 .

[2]  Simon K. Warfield,et al.  EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model , 2009, NeuroImage.

[3]  Harri Hakula,et al.  Conditionally Gaussian Hypermodels for Cerebral Source Localization , 2008, SIAM J. Imaging Sci..

[4]  H. Si,et al.  Adaptive tetrahedral mesh generation by constrained Delaunay refinement , 2008 .

[5]  Sampsa Pursiainen EEG/MEG forward simulation through h- and p-type finite elements , 2008 .

[6]  Bryon A. Mueller,et al.  A New Method to Derive White Matter Conductivity From Diffusion Tensor MRI , 2008, IEEE Transactions on Biomedical Engineering.

[7]  Katrina Wendel,et al.  The Influence of CSF on EEG Sensitivity Distributions of Multilayered Head Models , 2008, IEEE Transactions on Biomedical Engineering.

[8]  M. Cook,et al.  EEG source localization in focal epilepsy: Where are we now? , 2008, Epilepsia.

[9]  Harri Hakula,et al.  Conditionally Gaussian hypermodels for source localization in brain imaging , 2008 .

[10]  Sampsa Pursiainen,et al.  Computational methods in electromagnetic biomedical inverse problems , 2008 .

[11]  Harald Köstler,et al.  Numerical Mathematics of the Subtraction Method for the Modeling of a Current Dipole in EEG Source Reconstruction Using Finite Element Head Models , 2007, SIAM J. Sci. Comput..

[12]  Carsten H. Wolters,et al.  Geometry-Adapted Hexahedral Meshes Improve Accuracy of Finite-Element-Method-Based EEG Source Analysis , 2007, IEEE Transactions on Biomedical Engineering.

[13]  Y. Okada,et al.  Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals , 2006, The Journal of physiology.

[14]  Lei Ding,et al.  A cortical potential imaging study from simultaneous extra- and intracranial electrical recordings by means of the finite element method , 2006, NeuroImage.

[15]  R. T. Hart,et al.  Finite-element model of the human head: scalp potentials due to dipole sources , 1991, Medical and Biological Engineering and Computing.

[16]  Z.J. Koles,et al.  A High-Resolution Anisotropic Finite-Volume Head Model for EEG Source Analysis , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[17]  Y. D'Asseler,et al.  A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization , 2005 .

[18]  Jukka Nenonen,et al.  Representation of bioelectric current sources using Whitney elements in the finite element method , 2005, Physics in medicine and biology.

[19]  Olivier D. Faugeras,et al.  A common formalism for the Integral formulations of the forward EEG problem , 2005, IEEE Transactions on Medical Imaging.

[20]  J. Haueisen,et al.  Role of Soft Bone, CSF and Gray Matter in EEG Simulations , 2003, Brain Topography.

[21]  Klaus Gärtner,et al.  Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations , 2005, IMR.

[22]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[23]  C. E. Acar,et al.  Sensitivity of EEG and MEG measurements to tissue conductivity , 2004, Physics in medicine and biology.

[24]  W. Hackbusch,et al.  Efficient Computation of Lead Field Bases and Influence Matrix for the FEM-based EEG and MEG Inverse Problem. Part I: Complexity Considerations , 2003 .

[25]  Carsten H. Wolters,et al.  A parallel algebraic multigrid solver for finite element method based source localization in the human brain , 2002 .

[26]  Jens Haueisen,et al.  Dipole models for the EEG and MEG , 2002, IEEE Transactions on Biomedical Engineering.

[27]  GUNDOLF HAASE,et al.  Parallel Algebraic Multigrid Methods on Distributed Memory Computers , 2002, SIAM J. Sci. Comput..

[28]  A. Dale,et al.  Conductivity tensor mapping of the human brain using diffusion tensor MRI , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Gundolf Haase,et al.  Parallel AMG on Distributed MemoryComputers 1 , 2000 .

[30]  A. Snyder,et al.  Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. , 1999, Radiology.

[31]  M. Peters,et al.  Volume conduction effects in EEG and MEG. , 1998, Electroencephalography and clinical neurophysiology.

[32]  Sylvain Baillet,et al.  Influence of skull anisotropy for the forward and inverse problem in EEG: Simulation studies using FEM on realistic head models , 1998, Human brain mapping.

[33]  D. Wilton,et al.  Computational aspects of finite element modeling in EEG source localization , 1997, IEEE Transactions on Biomedical Engineering.

[34]  M Wagner,et al.  Inverse localization of electric dipole current sources in finite element models of the human head. , 1997, Electroencephalography and clinical neurophysiology.

[35]  David R. Wozny,et al.  The electrical conductivity of human cerebrospinal fluid at body temperature , 1997, IEEE Transactions on Biomedical Engineering.

[36]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[37]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[38]  J. D. Munck,et al.  A fast method to compute the potential in the multisphere model (EEG application) , 1993, IEEE Transactions on Biomedical Engineering.

[39]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[40]  Onno W. Weier,et al.  On the numerical accuracy of the boundary element method (EEG application) , 1989, IEEE Transactions on Biomedical Engineering.

[41]  H. Spekreijse,et al.  Mathematical dipoles are adequate to describe realistic generators of human brain activity , 1988, IEEE Transactions on Biomedical Engineering.

[42]  J Sarvas,et al.  Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem , 1987 .

[43]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.

[44]  F. Stenger Approximate Calculation of Multiple Integrals (A. H. Stroud) , 1973 .

[45]  D. B. Heppner,et al.  Considerations of quasi-stationarity in electrophysiological systems. , 1967, The Bulletin of mathematical biophysics.