Intercalates and discrepancy in random Latin squares
暂无分享,去创建一个
[1] Arthur O. Pittenger,et al. Mappings of latin squares , 1997 .
[2] Ron M. Roth,et al. Two-dimensional weight-constrained codes through enumeration bounds , 2000, IEEE Trans. Inf. Theory.
[3] Matthew Kwan. Almost all Steiner triple systems have perfect matchings , 2016, Proceedings of the London Mathematical Society.
[4] P. Matthews,et al. Generating uniformly distributed random latin squares , 1996 .
[5] D. Falikman. Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .
[6] G. Egorychev. The solution of van der Waerden's problem for permanents , 1981 .
[7] N. Linial,et al. Discrepancy of High-Dimensional Permutations , 2015, 1512.04123.
[8] Brendan D. McKay,et al. The degree sequence of a random graph. I. The models , 1997, Random Struct. Algorithms.
[9] Brendan D. McKay,et al. Most Latin Squares Have Many Subsquares , 1999, J. Comb. Theory A.
[10] P. Bartlett. Completions of ε-Dense Partial Latin Squares , 2013 .
[11] Benny Sudakov,et al. Random regular graphs of high degree , 2001, Random Struct. Algorithms.
[12] Paul Erdös,et al. On random graphs, I , 1959 .
[13] Ian M. Wanless,et al. The cycle structure of two rows in a random Latin square , 2008, Random Struct. Algorithms.
[14] Peter J. Cameron,et al. Bounds on the number of small Latin subsquares , 2014, J. Comb. Theory, Ser. A.
[15] Béla Bollobás,et al. Random Graphs , 1985 .
[16] Padraic James Bartlett. Completions of ε-Dense Partial Latin Squares: COMPLETIONS OF ε-DENSE PARTIAL LATIN SQUARES , 2013 .
[17] Katherine Heinrich,et al. The maximum number of intercalates in a latin square , 1981 .
[18] Roland Häggkvist,et al. All-even latin squares , 1996, Discret. Math..
[19] Anton Kotzig,et al. On certain constructions for latin squares with no latin subsquares of order two , 1976, Discret. Math..
[20] D. A. Preece,et al. Chapter 10 - Latin Squares as Experimental Designs , 1991 .
[21] J. Dénes,et al. Latin squares and their applications , 1974 .
[22] Svante Janson,et al. Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.
[23] Peter J. Cameron. Almost all quasigroups have rank 2 , 1992, Discret. Math..