Intercalates and discrepancy in random Latin squares

An intercalate in a Latin square is a $2\times2$ Latin subsquare. Let $N$ be the number of intercalates in a uniformly random $n\times n$ Latin square. We prove that asymptotically almost surely $N\ge\left(1-o\left(1\right)\right)\,n^{2}/4$, and that $\mathbb{E}N\le\left(1+o\left(1\right)\right)\,n^{2}/2$ (therefore asymptotically almost surely $N\le fn^{2}$ for any $f\to\infty$). This significantly improves the previous best lower and upper bounds. We also give an upper tail bound for the number of intercalates in two fixed rows of a random Latin square. In addition, we discuss a problem of Linial and Luria on low-discrepancy Latin squares.

[1]  Arthur O. Pittenger,et al.  Mappings of latin squares , 1997 .

[2]  Ron M. Roth,et al.  Two-dimensional weight-constrained codes through enumeration bounds , 2000, IEEE Trans. Inf. Theory.

[3]  Matthew Kwan Almost all Steiner triple systems have perfect matchings , 2016, Proceedings of the London Mathematical Society.

[4]  P. Matthews,et al.  Generating uniformly distributed random latin squares , 1996 .

[5]  D. Falikman Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .

[6]  G. Egorychev The solution of van der Waerden's problem for permanents , 1981 .

[7]  N. Linial,et al.  Discrepancy of High-Dimensional Permutations , 2015, 1512.04123.

[8]  Brendan D. McKay,et al.  The degree sequence of a random graph. I. The models , 1997, Random Struct. Algorithms.

[9]  Brendan D. McKay,et al.  Most Latin Squares Have Many Subsquares , 1999, J. Comb. Theory A.

[10]  P. Bartlett Completions of ε-Dense Partial Latin Squares , 2013 .

[11]  Benny Sudakov,et al.  Random regular graphs of high degree , 2001, Random Struct. Algorithms.

[12]  Paul Erdös,et al.  On random graphs, I , 1959 .

[13]  Ian M. Wanless,et al.  The cycle structure of two rows in a random Latin square , 2008, Random Struct. Algorithms.

[14]  Peter J. Cameron,et al.  Bounds on the number of small Latin subsquares , 2014, J. Comb. Theory, Ser. A.

[15]  Béla Bollobás,et al.  Random Graphs , 1985 .

[16]  Padraic James Bartlett Completions of ε-Dense Partial Latin Squares: COMPLETIONS OF ε-DENSE PARTIAL LATIN SQUARES , 2013 .

[17]  Katherine Heinrich,et al.  The maximum number of intercalates in a latin square , 1981 .

[18]  Roland Häggkvist,et al.  All-even latin squares , 1996, Discret. Math..

[19]  Anton Kotzig,et al.  On certain constructions for latin squares with no latin subsquares of order two , 1976, Discret. Math..

[20]  D. A. Preece,et al.  Chapter 10 - Latin Squares as Experimental Designs , 1991 .

[21]  J. Dénes,et al.  Latin squares and their applications , 1974 .

[22]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[23]  Peter J. Cameron Almost all quasigroups have rank 2 , 1992, Discret. Math..