Simulation study of multiple intelligent vehicle control using stochastic learning automata

This paper presents an intelligent controller for an automated vehicle planning its trajectory based on sensor and communication data received. The controller is designed using a stochastic learning automaton. Using the data received from on-board sensors, two automata are capable of learning the best possible actions to avoid collisions. Simulations for simultaneous lateral and longitudinal control of a vehicle using this method are encouraging.

[1]  John Lygeros,et al.  Hierarchical hybrid control: an IVHS case study , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[2]  Kumpati S. Narendra,et al.  Learning Automata - A Survey , 1974, IEEE Trans. Syst. Man Cybern..

[3]  Pushkin Kachroo,et al.  Multiple stochastic learning automata for vehicle path control in an automated highway system , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[4]  Kaddour Najim,et al.  Learning Automata: Theory and Applications , 1994 .

[5]  John Lygeros,et al.  An interface between continuous and discrete-event controllers for vehicle automation , 1994 .

[6]  Pravin Varaiya,et al.  Smart cars on smart roads: problems of control , 1991, IEEE Trans. Autom. Control..

[7]  George E. Ferris,et al.  An Introduction to Mathematical Learning Theory , 1966 .

[8]  P. Mourou,et al.  Multi-Agent Planning and Execution Monitoring : Application to Highway Traffic , 1992, Proceedings of the Third Annual Conference of AI, Simulation, and Planning in High Autonomy Systems 'Integrating Perception, Planning and Action'..

[9]  Rahul Sukthankar,et al.  Adaptive Intelligent Vehicle Modules for Tactical Driving , 1996 .

[10]  Stuart J. Russell,et al.  The BATmobile: Towards a Bayesian Automated Taxi , 1995, IJCAI.

[11]  馬場 則夫 New topics in learning automata theory and applications , 1984 .

[12]  Kaddour Najim,et al.  Multimodal searching technique based on learning automata with continuous input and changing number of actions , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[13]  Pravin Varaiya,et al.  Decidability of Hybrid Systems with Rectangular Differential Inclusion , 1994, CAV.

[14]  Kanagasabai Rajaraman,et al.  Finite time analysis of the pursuit algorithm for learning automata , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[15]  James F. Cremer,et al.  The Software Architecture for Scenario Control in the Iowa Driving Simulator , 1993 .

[16]  M. L. Tsetlin,et al.  Automaton theory and modeling of biological systems , 1973 .

[17]  K. Narendra,et al.  Learning AutomataA Survey , 1974 .

[18]  Kaan Ozbay,et al.  DYNAMIC VISUAL MICRO-MACROSCOPIC TRAFFIC SOFTWARE (DYNAVIMTS) PACKAGE FOR STUDIES ON AUTOMATED HIGHWAY SYSTEMS (AHS) , 1996 .

[19]  K. Najim Modelling and self‐adjusting control of an absorption column , 1991 .

[20]  K. Fu,et al.  Stochastic automata as models of learning systems , 1994 .

[21]  John S. Bay,et al.  Intelligent navigation of autonomous vehicles in an automated highway system: learning methods and interacting vehicles approach , 1997 .

[22]  Q. H. Wu,et al.  Stochastic Optimal Control of Active Vehicle Suspensions Using Learning Automata , 1993 .

[23]  Frederick Mosteller,et al.  Stochastic Models for Learning , 1956 .

[24]  Harley Bornbach,et al.  An introduction to mathematical learning theory , 1967 .