Clustering with Random Indexing K-tree and XML Structure
暂无分享,去创建一个
[1] Gabriella Kazai. Initiative for the Evaluation of XML Retrieval , 2009 .
[2] Shlomo Geva,et al. K-tree: large scale document clustering , 2009, SIGIR.
[3] Heikki Mannila,et al. Random projection in dimensionality reduction: applications to image and text data , 2001, KDD '01.
[4] Shlomo Geva,et al. Document Clustering with K-tree , 2008, INEX.
[5] Sanjoy Dasgupta,et al. An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.
[6] Shlomo Geva. K-tree: a height balanced tree structured vector quantizer , 2000, Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No.00TH8501).
[7] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[8] Shlomo Geva,et al. Random Indexing K-tree , 2009, HiPC 2010.
[9] Anupam Gupta,et al. An elementary proof of the Johnson-Lindenstrauss Lemma , 1999 .
[10] Pentti Kanerva,et al. The Spatter Code for Encoding Concepts at Many Levels , 1994 .
[11] K. Sparck Jones,et al. Simple, proven approaches to text retrieval , 1994 .
[12] Geoffrey E. Hinton,et al. Distributed representations and nested compositional structure , 1994 .
[13] Magnus Sahlgren,et al. An Introduction to Random Indexing , 2005 .
[14] Dimitris Achlioptas,et al. Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..
[15] Richard A. Harshman,et al. Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..