Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives

Abstract Graphene-epoxy thermal conductive adhesive was obtained using few-layer graphene sheets as additives which were fabricated by a re-expansion and exfoliation method. The experimental results show that graphene sheets can effectively enhance the thermal conductivity of epoxy matrix, with 4.01 W m −1  K −1 for the maximum filling loading of weight 10.10%, which is enhanced by more than 22 times of the pure epoxy resin, about 2.2 times higher than that of the same resin with the maximum weight 16.81% filled with graphite nanoflakes, and approximately 2.4 times higher than that of the same resin with the maximum weight 44.3% filled with the natural graphite powder.

[1]  Jooheon Kim,et al.  The effect of Al2O3 doped multi-walled carbon nanotubes on the thermal conductivity of Al2O3/epoxy terminated poly(dimethylsiloxane) composites , 2011 .

[2]  S. Ramaprabhu,et al.  Enhanced convective heat transfer using graphene dispersed nanofluids , 2011, Nanoscale research letters.

[3]  S. Gustafsson,et al.  THERMAL CONDUCTIVITY, THERMAL DIFFUSIVITY, AND SPECIFIC HEAT OF THIN SAMPLES FROM TRANSIENT MEASUREMENTS WITH HOT DISK SENSORS , 1994 .

[4]  E. Bekyarova,et al.  Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet – Carbon Nanotube Filler for Epoxy Composites , 2008 .

[5]  H. Liem,et al.  Enhanced thermal conductivity of boron nitride epoxy‐matrix composite through multi‐modal particle size mixing , 2007 .

[6]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[7]  Jooheon Kim,et al.  The thermal conductivity of embedded nano-aluminum nitride-doped multi-walled carbon nanotubes in epoxy composites containing micro-aluminum nitride particles , 2012, Nanotechnology.

[8]  Xingyi Huang,et al.  A review of dielectric polymer composites with high thermal conductivity , 2011, IEEE Electrical Insulation Magazine.

[9]  B. Ai,et al.  Chirality- and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study , 2011, 1111.5611.

[10]  Y. Liang,et al.  Thermal Analysis of the Heat Exchanger for Power Electronic Device with Higher Power Density , 2012 .

[11]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[12]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[13]  Kwang-Seong Choi,et al.  Characterization of a Hybrid Cu Paste as an Isotropic Conductive Adhesive , 2011 .

[14]  Roshan Jeet Jee Jachuck,et al.  Integrated thermal management techniques for high power electronic devices , 2004 .

[15]  K. Paik,et al.  Vertically aligned nickel nanowire/epoxy composite for electrical and thermal conducting material , 2012, 2012 IEEE 62nd Electronic Components and Technology Conference.

[16]  Liyu Yang,et al.  Design‐for‐reliability implementation in microelectronics packaging development , 2011 .

[17]  Yuan-Xiang Fu,et al.  Production of monolayer, trilayer, and multi-layer graphene sheets by a re-expansion and exfoliation method , 2014, Journal of Materials Science.

[18]  M. Itkis,et al.  Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials , 2007 .

[19]  K. Kakaei One-pot electrochemical synthesis of graphene by the exfoliation of graphite powder in sodium dodecyl sulfate and its decoration with platinum nanoparticles for methanol oxidation , 2013 .

[20]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[21]  Jin Yu,et al.  Comparative study of thermally conductive fillers in underfill for the electronic components , 2005 .

[22]  B. Allard,et al.  Developing an equivalent thermal model for discrete semiconductor packages , 2003 .

[23]  M. Rodríguez-Pérez,et al.  Functionalized graphene sheet filled silicone foam nanocomposites , 2008 .

[24]  Ching-Ping Wong,et al.  Comparative study of thermally conductive fillers for use in liquid encapsulants for electronic packaging , 1999 .

[25]  M. Tanaka,et al.  Thermal conductivity of a polymer composite filled with mixtures of particles , 1987 .

[26]  Dimos Poulikakos,et al.  An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures , 2009, Nanotechnology.

[27]  Gerhard Ruffert,et al.  Ein flexibles, mikrostrukturiertes Modul für die Desorption: Der High Efficiency Contactor , 2011 .

[28]  Y. Agari,et al.  Thermal conductivity of polymer filled with carbon materials: Effect of conductive particle chains on thermal conductivity , 1985 .

[29]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[30]  Seokwoo Jeon,et al.  Enhanced Thermal Conductivity of Epoxy–Graphene Composites by Using Non‐Oxidized Graphene Flakes with Non‐Covalent Functionalization , 2013, Advanced materials.

[31]  A. Balandin,et al.  Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. , 2012, Nano letters.

[32]  S. Gustafsson Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials , 1991 .

[33]  S. Ramaprabhu,et al.  Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation , 2011 .

[34]  Tian Jian Lu,et al.  Thermal management of high power electronics with phase change cooling , 2000 .

[35]  K. Sheng,et al.  Rheology and Thermal Conductivity of Diamond Powder-Filled Liquid Epoxy Encapsulants for Electronic Packaging , 2009, IEEE Transactions on Components and Packaging Technologies.

[36]  Shengyu Feng,et al.  Thermal conductivity of silicone rubber filled with ZnO , 2007 .

[37]  A. E. Bergles,et al.  Evolution of cooling technology for electrical, electronic, and microelectronic equipment , 2003 .

[38]  Liangliang Li,et al.  Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material , 2012 .

[39]  Wenying Zhou Effect of coupling agents on the thermal conductivity of aluminum particle/epoxy resin composites , 2011 .

[40]  S. Stankovich,et al.  Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy , 2009 .

[41]  D. Basko,et al.  Raman spectroscopy as a versatile tool for studying the properties of graphene. , 2013, Nature nanotechnology.

[42]  Xingyi Huang,et al.  Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites , 2012 .

[43]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[44]  Sarit K. Das,et al.  Thermal conductivity enhancement of nanofluids containing graphene nanosheets , 2011 .

[45]  M. Inoue,et al.  Influences of filler geometry and content on effective thermal conductivity of thermal conductive adhesive , 2009, 2009 59th Electronic Components and Technology Conference.

[46]  C. Zhi,et al.  Toward Effective Synergetic Effects from Graphene Nanoplatelets and Carbon Nanotubes on Thermal Conductivity of Ultrahigh Volume Fraction Nanocarbon Epoxy Composites , 2012 .

[47]  David C. Whalley,et al.  THERMAL DESIGN OF HIGH POWER SEMICONDUCTOR PACKAGES FOR AIRCRAFT SYSTEMS , 1999 .

[48]  Lixian Sun,et al.  Thermal conductivity enhancement of Ag nanowires on an organic phase change material , 2010 .

[49]  J. Arau,et al.  High-efficient integrated electronic ballast for compact fluorescent lamps , 2006, IEEE Transactions on Power Electronics.

[50]  H. Dai,et al.  Highly conducting graphene sheets and Langmuir-Blodgett films. , 2008, Nature nanotechnology.

[51]  D.D.L. Chung,et al.  Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials , 2009 .