Reef-Forming Cold-Water Corals

Coral reefs are something we usually associate with warm, tropical waters and exotic fish, but not with the cold, deep and dark waters of the North Atlantic, where corals were regarded as oddities on the seafloor. It is now known that cold-water coral species also produce reefs which rival their tropical cousins in terms of their species richness and diversity. Increasing commercial operations in deep waters, and the use of advanced offshore technology have slowly revealed the true extent of Europe’s hidden coral ecosystems. This article reviews current knowledge about the reef-forming potential and the environmental controls of the scleractinian Lophelia pertusa along different deep-shelf and continental margin settings with special reference to NE Atlantic occurrences.

[1]  N. Michiels,et al.  Sex and violence in hermaphrodites , 1998, Nature.

[2]  S. Stanley Climatic cooling and mass extinction of Paleozoic reef communities , 1988 .

[3]  N. James THE COOL-WATER CARBONATE DEPOSITIONAL REALM , 1997 .

[4]  J. Wilson ‘Patch’ development of the deep-water coral Lophelia Pertusa (L.) on Rockall Bank , 1979, Journal of the Marine Biological Association of the United Kingdom.

[5]  Wolfgang H Berger,et al.  The South Atlantic: Present and Past Circulation , 1996 .

[6]  M. Taviani,et al.  Dating the death of Mediterranean deep-sea scleractinian corals , 1984 .

[7]  J. Veron Corals in space and time , 1995 .

[8]  D. Squires New species of caryophylliid corals from the Gulf Coast Tertiary , 1957 .

[9]  M. Hovland,et al.  Fault-associated seabed mounds (carbonate knolls?) off western Ireland and north-west Australia , 1994 .

[10]  Edwards,et al.  Deep-Sea coral evidence for rapid change in ventilation of the deep north atlantic 15,400 years Ago , 1998, Science.

[11]  Lynn Poole,et al.  Diving for science , 1955 .

[12]  Jan Smith,et al.  Coral growing on North Sea oil rigs , 1999, Nature.

[13]  H. Schwarcz,et al.  Rapid climate change in the North Atlantic during the Younger Dryas recorded by deep-sea corals , 1997, Nature.

[14]  A. Hine,et al.  Coral mounds on the West Florida slope; unanswered questions regarding the development of deep-water banks , 1987 .

[15]  J. Schönfeld,et al.  Substrate pitting and boring pattern of Hyrrokkin sarcophaga Cedhagen, 1994 (Foraminifera) in a modern deep-water coral reef mound , 1996 .

[16]  P. Vella Foraminifera and other fossils from late Tertiary deep-water coral thickets, Wairarapa, New Zealand , 1964 .

[17]  U. Båmstedt,et al.  Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L) (Anthozoa, Scleractinia): Implications for determination of linear extension rate , 1998 .

[18]  H. Schwarcz,et al.  Paleotemperatures From Deep-Sea Corals: Overcoming ‘Vital Effects’ , 2000 .

[19]  R. Kowsmann,et al.  Hydrology, morphology and sedimentology of the Campos continental margin, offshore Brazil , 1998 .

[20]  P. B. Mortensen,et al.  Ahermatypic coral banks off mid-Norway; evidence for a link with seepage of light hydrocarbons , 1998 .

[21]  Harry F. Filkorn Fossil scleractinian corals from James Ross Basin, Antarctica , 1994 .

[22]  J. B. Wilson Biogenic carbonate sediments on the Scottish continental shelf and on Rockall Bank , 1979 .

[23]  J. Reid On the contribution of the Mediterranean Sea outflow to the Norwegian-Greenland Sea , 1979 .

[24]  A. Beu,et al.  Mollusca from a recent coral community in Palliser bay, cook strait , 1974 .

[25]  A. Tudhope,et al.  Processes of sedimentation in Gollum Channel, Porcupine Seabight: submersible observations and sediment analyses , 1995, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[26]  Richard Cowen,et al.  Algal Symbiosis and Its Recognition in the Fossil Record , 1983 .

[27]  T. McConnaughey 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects , 1989 .

[28]  J. R. Reid On the Circulation of the South Atlantic Ocean , 1996 .

[29]  Timothy P. Boyer,et al.  World Ocean Atlas 1994. Volume 3. Salinity , 1994 .

[30]  I. Hajdas,et al.  Coral provides way to age deep water , 1998, Nature.

[31]  P. B. Mortensen,et al.  Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64° n on the Norwegian shelf: Structure and associated megafauna , 1995 .

[32]  T. McConnaughey 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns , 1989 .

[33]  Wolfgang H Berger,et al.  Central Themes of South Atlantic Circulation , 1996 .

[34]  G. Bowes,et al.  The facies distribution of carbonate sediments on Porcupine bank, northeast Atlantic , 1988 .

[35]  Alex D. Rogers,et al.  The Biology of Lophelia pertusa (Linnaeus 1758) and Other Deep‐Water Reef‐Forming Corals and Impacts from Human Activities. , 1999 .

[36]  R. Henrich,et al.  Anatomy of a Deep-Water Coral Reef Mound from Stjernsund, West Finnmark, Northern Norway , 1997 .

[37]  D. Squires,et al.  Coral banks occurring in deep water on the Blake Plateau. American Museum novitates ; no. 2114 , 1962 .

[38]  J. Henriet,et al.  Gas hydrate crystals may help build reefs , 1998, Nature.

[39]  P. Tyler,et al.  Megafauna from sublittoral to abyssal depths along the Mid-Atlantic Ridge south of Iceland , 1996 .

[40]  C. Teichert Cold- and Deep-Water Coral Banks , 1958 .

[41]  G. Llano,et al.  Biology of the Antarctic seas , 1964 .

[42]  A. Neumann,et al.  Effects of Submarine Cementation on Microfabrics and Physical Properties of Carbonate Slope Deposits, Northern Bahamas , 1993 .

[43]  B. Sageman,et al.  Marine palaeoenvironmental analysis from fossils , 1996 .

[44]  B. A. A. Ende,et al.  Lithoherms on the Florida–Hatteras slope , 2000 .

[45]  J. Clarke,et al.  Cool-water Carbonates , 2000 .

[46]  P. Hallock,et al.  Nutrient excess and the demise of coral reefs and carbonate platforms , 1986 .

[47]  Rüdiger Henrich,et al.  Grounding Pleistocene icebergs shape recent deep-water coral reefs , 1999 .

[48]  P. McCall,et al.  Biotic interactions in recent and fossil benthic communities , 1983 .

[49]  D. Squires Deep-water coral structure on the Campbell Plateau, New Zealand , 1965 .

[50]  H. Westerberg,et al.  The distribution of the scleractinian coral Lophelia pertusa around the Faroe islands and the relation to internal tidal mixing , 1992 .

[51]  A. L. Rice,et al.  The IOSDL DEEPSEAS programme: introduction and photographic evidence for the presence and absence of a seasonal input of phytodetritus at contrasting abyssal sites in the northeastern atlantic , 1994 .

[52]  J. Reid,et al.  On the total geostrophic circulation of the pacific ocean: flow patterns, tracers, and transports , 1997 .

[53]  J. Lang,et al.  Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern Straits of Florida , 1990 .

[54]  Rune S. Frederiksen,et al.  The fauna associated with the bank-forming deepwater coral Lophelia pertusa (Scleractinaria) on the Faroe shelf , 1992 .

[55]  B. Bett RRS Charles Darwin Cruise 112C, 19 May-24 Jun 1998. Atlantic Margin Environmental Survey: seabed survey of deep-water areas (17th round Tranches) to the north and west of Scotland , 1999 .

[56]  S. Cairns,et al.  Constructional azooxanthellate coral communities: an overview with implications for the fossil record , 1988 .

[57]  A. Freiwald,et al.  Taphonomy of modern deep, cold‐temperate water coral reefs , 1998 .

[58]  D. Squires FOSSIL CORAL THICKETS IN WAIRARAPA, NEW ZEALAND , 1964 .

[59]  Timothy P. Boyer,et al.  World Ocean Atlas 1994. Volume 4. Temperature , 1994 .

[60]  John Miller,et al.  Plio-Pleistocene sedimentation in coastal grabens, north-east Rhodes, Greece , 1996 .

[61]  C. Montenat,et al.  Some aspects of the recent tectonics in the Strait of Messina, Italy , 1991 .

[62]  H. T. Mullins,et al.  Modern Deep-Water Coral Mounds North of Little Bahama Bank: Criteria for Recognition of Deep-Water Coral Bioherms in the Rock Record , 1981 .