Accelerated Analysis of Biological Parameters Space Using GPUs

Mathematical modeling and computer simulation represent a valuable mean to integrate experimental research for the study of biological systems. However, many computational methods—e.g., sensitivity analysis—require the execution of a massive number of simulations to investigate the model behavior in physiological or perturbed conditions, which can be a computationally challenging task. This huge amount of simulations is necessary to collect data in the vast space of kinetic parameters. This paper provides the state-of-the-art of biochemical simulators relying on Graphics Processing Units (GPUs) in the context of Systems Biology. Moreover, we discuss two examples of integration of such simulators into computational methods for parameter sweep and sensitivity analysis, both implemented using the Python language.

[1]  Shuangzhe Liu,et al.  Global Sensitivity Analysis: The Primer by Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, Stefano Tarantola , 2008 .

[2]  Marco S. Nobile,et al.  Computational Strategies for a System-Level Understanding of Metabolism , 2014, Metabolites.

[3]  Hong Li,et al.  Efficient Parallelization of the Stochastic Simulation Algorithm for Chemically Reacting Systems On the Graphics Processing Unit , 2010, Int. J. High Perform. Comput. Appl..

[4]  J. Butcher Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[5]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[6]  Michael P. H. Stumpf,et al.  GPU accelerated biochemical network simulation , 2011, Bioinform..

[7]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[8]  Giancarlo Mauri,et al.  LASSIE: simulating large-scale models of biochemical systems on GPUs , 2017, BMC Bioinformatics.

[9]  Yiannis Kaznessis,et al.  Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. , 2005, The Journal of chemical physics.

[10]  Roshan M. D’Souza,et al.  Accelerating the Gillespie τ-Leaping Method Using Graphics Processing Units , 2012, PloS one.

[11]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[12]  Giancarlo Mauri,et al.  Reverse engineering of kinetic reaction networks by means of Cartesian Genetic Programming and Particle Swarm Optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[13]  A. Saltelli,et al.  Sensitivity analysis for chemical models. , 2005, Chemical reviews.

[14]  Linda R. Petzold,et al.  Improved leap-size selection for accelerated stochastic simulation , 2003 .

[15]  Roshan M. D'Souza,et al.  Accelerating the Gillespie Exact Stochastic Simulation Algorithm Using Hybrid Parallel Execution on Graphics Processing Units , 2012, PloS one.

[16]  Giancarlo Mauri,et al.  cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems , 2014, PloS one.

[17]  Giancarlo Mauri,et al.  GPU-accelerated simulations of mass-action kinetics models with cupSODA , 2014, The Journal of Supercomputing.

[18]  Kwang-Hyun Cho,et al.  Modeling and simulation of intracellular dynamics: choosing an appropriate framework , 2004, IEEE Transactions on NanoBioscience.

[19]  Paulette Clancy,et al.  A "partitioned leaping" approach for multiscale modeling of chemical reaction dynamics. , 2006, The Journal of chemical physics.

[20]  Noriko Hiroi,et al.  Acceleration of discrete stochastic biochemical simulation using GPGPU , 2015, Front. Physiol..

[21]  John R. Koza,et al.  Automatic Computational Discovery of Chemical Reaction Networks Using Genetic Programming , 2007, Computational Discovery of Scientific Knowledge.

[22]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[23]  Sergei S. Kucherenko,et al.  Derivative based global sensitivity measures and their link with global sensitivity indices , 2009, Math. Comput. Simul..

[24]  Marco S. Nobile,et al.  Graphics processing units in bioinformatics, computational biology and systems biology , 2016, Briefings Bioinform..

[25]  Thomas Wilhelm,et al.  The smallest chemical reaction system with bistability , 2009, BMC Systems Biology.

[26]  Michael Goesele,et al.  Massively-Parallel Simulation of Biochemical Systems , 2009, GI Jahrestagung.

[27]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[28]  Giancarlo Mauri,et al.  A GPU-Based Multi-swarm PSO Method for Parameter Estimation in Stochastic Biological Systems Exploiting Discrete-Time Target Series , 2012, EvoBIO.

[29]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[30]  Stephen Gilmore,et al.  Sensitivity Analysis of Stochastic Models of Bistable Biochemical Reactions , 2008, SFM.

[31]  Giancarlo Mauri,et al.  COSYS: A Computational Infrastructure for Systems Biology , 2016, CIBB.

[32]  T. E. Hull,et al.  Comparing Numerical Methods for Ordinary Differential Equations , 1972 .

[33]  Buddy Bland,et al.  Titan - Early experience with the Titan system at Oak Ridge National Laboratory , 2012, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis.

[34]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[35]  D. Wilkinson Stochastic modelling for quantitative description of heterogeneous biological systems , 2009, Nature Reviews Genetics.

[36]  Muruhan Rathinam,et al.  Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method , 2003 .

[37]  Linda R Petzold,et al.  Efficient step size selection for the tau-leaping simulation method. , 2006, The Journal of chemical physics.

[38]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[39]  L. Petzold Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations , 1983 .