NGTS-12b: A sub-Saturn mass transiting exoplanet in a 7.53 day orbit

We report the discovery of the transiting exoplanet NGTS-12b by the Next Generation Transit Survey (NGTS). The host star, NGTS-12, is a V = 12.38 mag star with an effective temperature of Teff = 5690 ± 130 K. NGTS-12b orbits with a period of P = 7.53 d, making it the longest period planet discovered to date by the main NGTS survey. We verify the NGTS transit signal with data extracted from the Transiting Exoplanet Survey Satellite (TESS) full-frame images, and combining the photometry with radial velocity measurements from HARPS and FEROS we determine NGTS-12b to have a mass of 0.208 ± 0.022 MJ and a radius of 1.048 ± 0.032 RJ. NGTS-12b sits on the edge of the Neptunian desert when we take the stellar properties into account, highlighting the importance of considering both the planet and star when studying the desert. The long period of NGTS-12b combined with its low density of just 0.223 ± 0.029 g cm−3 make it an attractive target for atmospheric characterization through transmission spectroscopy with a Transmission Spectroscopy Metric of 89.4.

[1]  E. Petigura,et al.  Tidal Inflation Reconciles Low-density Sub-Saturns with Core Accretion , 2020, The Astrophysical Journal.

[2]  David J Armstrong,et al.  NGTS-11 b (TOI-1847 b): A Transiting Warm Saturn Recovered from a TESS Single-transit Event , 2020, The Astrophysical Journal.

[3]  B. Gaensicke,et al.  Cold Giant Planets Evaporated by Hot White Dwarfs , 2019, The Astrophysical Journal.

[4]  J. Winn,et al.  Cluster Difference Imaging Photometric Survey. I. Light Curves of Stars in Open Clusters from TESS Sectors 6 and 7 , 2019, The Astrophysical Journal Supplement Series.

[5]  E. Agol,et al.  Analytic Planetary Transit Light Curves and Derivatives for Stars with Polynomial Limb Darkening , 2019, The Astronomical Journal.

[6]  David J Armstrong,et al.  Classifying exoplanet candidates with convolutional neural networks: application to the Next Generation Transit Survey , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  Keivan G. Stassun,et al.  The Revised TESS Input Catalog and Candidate Target List , 2019, The Astronomical Journal.

[8]  D. Bayliss,et al.  NGTS-5b: a highly inflated planet offering insights into the sub-Jovian desert , 2019, Astronomy & Astrophysics.

[9]  David P. Fleming,et al.  starry: Analytic Occultation Light Curves , 2018, 1810.06559.

[10]  David J Armstrong,et al.  NGTS-4b: A sub-Neptune transiting in the desert , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  Robert T. Zellem,et al.  A Framework for Prioritizing the TESS Planetary Candidates Most Amenable to Atmospheric Characterization , 2018, Publications of the Astronomical Society of the Pacific.

[12]  P. J. Richards,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[13]  Gregory S. Tucker,et al.  The Transiting Exoplanet Community Early Release Science Program for JWST , 2018, Publications of the Astronomical Society of the Pacific.

[14]  P. Maxted,et al.  The atmospheric parameters of FGK stars using wavelet analysis of CORALIE spectra , 2018, 1801.06106.

[15]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[16]  R. G. West,et al.  The discoveries of WASP-91b, WASP-105b and WASP-107b: two warm Jupiters and a planet in the transition region between ice giants and gas giants , 2017, 1701.03776.

[17]  E. Petigura,et al.  Precision Stellar Characterization of FGKM Stars using an Empirical Spectral Library , 2017, 1701.00922.

[18]  Rafael Brahm,et al.  CERES: A Set of Automated Routines for Echelle Spectra , 2016, 1609.02279.

[19]  D. Veras The fates of Solar system analogues with one additional distant planet , 2016, 1608.07580.

[20]  E. Villaver,et al.  The effect of tides on the population of PN from interacting binaries , 2016, 1608.03041.

[21]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[22]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[23]  G. Tucker,et al.  Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program , 2016, 1602.08389.

[24]  Tsevi Mazeh,et al.  Dearth of short-period Neptunian exoplanets - a desert in period-mass and period-radius planes , 2016, 1602.07843.

[25]  Dimitri Veras,et al.  Post-main-sequence planetary system evolution , 2016, Royal Society Open Science.

[26]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[27]  D. Kipping Bayesian priors for the eccentricity of transiting planets , 2014, 1408.1393.

[28]  Eva Villaver,et al.  HOT JUPITERS AND COOL STARS , 2014, 1407.7879.

[29]  P. McCullough,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[30]  A. Bloch,et al.  EVOLUTION OF PLANETARY ORBITS WITH STELLAR MASS LOSS AND TIDAL DISSIPATION , 2013, 1310.2577.

[31]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[32]  David M. Kipping,et al.  Parametrizing the exoplanet eccentricity distribution with the beta distribution. , 2013, 1306.4982.

[33]  University of Warwick,et al.  DONUTS: A Science Frame Autoguiding Algorithm with Sub-Pixel Precision, Capable of Guiding on Defocused Stars , 2013, 1304.2405.

[34]  Nigel Bannister,et al.  Next Generation Transit Survey (NGTS) , 2013, Proceedings of the International Astronomical Union.

[35]  E. Villaver,et al.  FORETELLINGS OF RAGNARÖK: WORLD-ENGULFING ASYMPTOTIC GIANTS AND THE INHERITANCE OF WHITE DWARFS , 2012, 1210.0328.

[36]  M. Wyatt,et al.  The great escape: how exoplanets and smaller bodies desert dying stars , 2011, 1107.1239.

[37]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[38]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[39]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[40]  Robert C. Smith,et al.  Distant future of the Sun and Earth revisited , 2008, 0801.4031.

[41]  John Southworth,et al.  A method for the direct determination of the surface gravities of transiting extrasolar planets , 2007, 0704.1570.

[42]  Richard W. Pogge,et al.  The Kilodegree Extremely Little Telescope (KELT): A Small Robotic Telescope for Large‐Area Synoptic Surveys , 2007, 0704.0460.

[43]  A. Baglin,et al.  The CoRoT Mission Pre-Launch Status - Stellar Seismology and Planet Finding , 2006 .

[44]  B. Enoch,et al.  The WASP Project and the SuperWASP Cameras , 2006, astro-ph/0608454.

[45]  F. Adams,et al.  Long-Term Evolution of Close Planets Including the Effects of Secular Interactions , 2006, astro-ph/0606349.

[46]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[47]  Tsevi Mazeh,et al.  Correcting systematic effects in a large set of photometric light curves , 2005, astro-ph/0502056.

[48]  F. Bouchy,et al.  Two new “very hot Jupiters” among the OGLE transiting candidates , 2004, astro-ph/0404264.

[49]  K. Stanek,et al.  Wide‐Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection , 2004, astro-ph/0401219.

[50]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[51]  Saurabh Jha,et al.  An extrasolar planet that transits the disk of its parent star , 2003, Nature.

[52]  G. Kov'acs,et al.  A box-fitting algorithm in the search for periodic transits , 2002, astro-ph/0206099.

[53]  C. Tout,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[54]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[55]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[56]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[57]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[58]  L. B. Lucy,et al.  Spectroscopic binaries with circular orbits , 1973 .

[59]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[60]  J. Hadjidemetriou Two-body problem with variable mass: A new approach , 1963 .