HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET

In this paper, we present results from the complete set of cosmic microwave background (CMB) radiation temperature anisotropy observations made with the Arcminute Cosmology Bolometer Array Receiver (ACBAR) operating at 150 GHz. We include new data from the final 2005 observing season, expanding the number of detector hours by 210% and the sky coverage by 490% over that used for the previous ACBAR release. As a result, the band-power uncertainties have been reduced by more than a factor of two on angular scales encompassing the third to fifth acoustic peaks as well as the damping tail of the CMB power spectrum. The calibration uncertainty has been reduced from 6% to 2.1% in temperature through a direct comparison of the CMB anisotropy measured by ACBAR with that of the dipole-calibrated WMAP5 experiment. The measured power spectrum is consistent with a spatially flat, ΛCDM cosmological model. We include the effects of weak lensing in the power spectrum model computations and find that this significantly improves the fits of the models to the combined ACBAR+WMAP5 power spectrum. The preferred strength of the lensing is consistent with theoretical expectations. On fine angular scales, there is weak evidence (1.1σ) for excess power above the level expected from primary anisotropies. We expect any excess power to be dominated by the combination of emission from dusty protogalaxies and the Sunyaev–Zel'dovich effect (SZE). However, the excess observed by ACBAR is significantly smaller than the excess power at ℓ>2000 reported by the CBI experiment operating at 30 GHz. Therefore, while it is unlikely that the CBI excess has a primordial origin; the combined ACBAR and CBI results are consistent with the source of the CBI excess being either the SZE or radio source contamination.

[1]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[2]  K. Gorski,et al.  The Scalar Perturbation Spectral Index ns: WMAP Sensitivity to Unresolved Point Sources , 2007, 0710.1873.

[3]  Oliver Zahn,et al.  Detection of gravitational lensing in the cosmic microwave background , 2007, 0705.3980.

[4]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[5]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[6]  K. Dawson,et al.  Final Results from the BIMA CMB Anisotropy Survey and Search for a Signature of the Sunyaev-Zel'dovich Effect , 2006, astro-ph/0602413.

[7]  P. Mauskopf,et al.  A Fluctuation Analysis of the Bolocam 1.1 mm Lockman Hole Survey , 2005, astro-ph/0508563.

[8]  A. Melchiorri,et al.  A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507494.

[9]  A. Melchiorri,et al.  A Measurement of the Polarization-Temperature Angular Cross-Power Spectrum of the Cosmic Microwave Background from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507507.

[10]  A. Melchiorri,et al.  A Measurement of the CMB ⟨EE⟩ Spectrum from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507514.

[11]  John E. Carlstrom,et al.  Degree Angular Scale Interferometer 3 Year Cosmic Microwave Background Polarization Results , 2005 .

[12]  P. Ade,et al.  The Bolocam Lockman Hole Millimeter-Wave Galaxy Survey: Galaxy Candidates and Number Counts , 2005, astro-ph/0503249.

[13]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[14]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[15]  J. Carlstrom,et al.  Degree Angular Scale Interferometer 3 Year Cosmic Microwave Background Polarization Results , 2004, astro-ph/0409357.

[16]  Edinburgh,et al.  A 1200-μm MAMBO survey of ELAIS N2 and the Lockman Hole - I. Maps, sources and number counts , 2004, astro-ph/0405361.

[17]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[18]  S. Church,et al.  Effects of Submillimeter and Radio Point Sources on the Recovery of Sunyaev-Zel'dovich Galaxy Cluster Parameters , 2003, astro-ph/0309643.

[19]  M. White,et al.  Point Sources in the Context of Future SZ Surveys , 2003, astro-ph/0308464.

[20]  M. Halpern,et al.  The Hubble Deep Field North SCUBA Super-map—I. Submillimetre maps, sources and number counts , 2003, astro-ph/0305444.

[21]  T. R. Seshadri,et al.  Small-scale cosmic microwave background polarization anisotropies due to tangled primordial magnetic fields , 2003, astro-ph/0303014.

[22]  Yun Wang,et al.  Model-independent Reconstruction of the Primordial Power Spectrum from Wilkinson Microwave Anistropy Probe Data , 2003, astro-ph/0303211.

[23]  J. Weller,et al.  Reconstructing the primordial power spectrum , 2003, astro-ph/0302306.

[24]  Caltech,et al.  Estimates of Cosmological Parameters Using the Cosmic Microwave Background Angular Power Spectrum of ACBAR , 2002, astro-ph/0212517.

[25]  C. L. Kuo,et al.  High-Resolution Observations of the Cosmic Microwave Background Power Spectrum with ACBAR , 2002, astro-ph/0212289.

[26]  A. Liddle,et al.  Microwave background constraints on inflationary parameters , 2002, astro-ph/0207213.

[27]  E. Komatsu,et al.  The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters , 2002, astro-ph/0205468.

[28]  M. White,et al.  Simulating the Sunyaev-Zeldovich Effect(s): Including Radiative Cooling and Energy Injection by Galactic Winds , 2002, astro-ph/0205437.

[29]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[30]  J. Bond,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/26/04 , 2022 .

[31]  J. Bond,et al.  The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager , 2002, astro-ph/0205388.

[32]  M. Kunz,et al.  A possible contribution to CMB anisotropies at high l from primordial voids , 2002, astro-ph/0204100.

[33]  U. Pen,et al.  The Sunyaev-Zeldovich Effect: Simulations and Observations , 2002, astro-ph/0201375.

[34]  J. Bond,et al.  Polarization Observations with the Cosmic Background Imager , 2001, Science.

[35]  Caltech,et al.  PUBLISHED IN THE ASTROPHYSICAL JOURNAL, 568, 38 Preprint typeset using L ATEX style emulateapj v. 14/09/00 DASI FIRST RESULTS: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND ANGULAR , 2002 .

[36]  S. Burles,et al.  What is the big-bang-nucleosynthesis prediction for the baryon density and how reliable is it? , 2000, astro-ph/0008495.

[37]  M. Tegmark,et al.  Large-Scale Sunyaev-Zeldovich Effect: Measuring Statistical Properties with Multifrequency Maps , 2000, astro-ph/0002238.

[38]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[39]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[40]  A. Jaffe,et al.  Radical Compression of Cosmic Microwave Background Data , 1998, astro-ph/9808264.

[41]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[42]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[43]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[44]  Max Tegmark How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.

[45]  U. Seljak Gravitational Lensing Effect on Cosmic Microwave Background Anisotropies: A Power Spectrum Approach , 1995, astro-ph/9505109.

[46]  Albrecht,et al.  Causality, randomness, and the microwave background. , 1995, Physical review letters.

[47]  Alan E. Wright,et al.  The Parkes-MIT-NRAO (PMN) surveys. 2: Source catalog for the southern survey (delta greater than -87.5 deg and less than -37 deg) , 1994 .

[48]  To appear in ApJ Preprint typeset using L ATEX style emulateapj v. 11/12/01 IMPROVED MEASUREMENTS OF THE CMB POWER SPECTRUM WITH ACBAR , 2006 .

[49]  Edward J. Wollack,et al.  FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE ( WMAP ) 1 OBSERVATIONS : IMPLICATIONS FOR INFLATION , 2003 .

[50]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003 .

[51]  L. Knox Cosmic Microwave Background Anisotropy Window Functions Revisited , 1999 .

[52]  G. Starkman,et al.  Axiorecombination: A New Mechanism for Stellar Axion Production , 1986 .

[53]  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 2/12/04 EXTENDED MOSAIC OBSERVATIONS WITH THE COSMIC BACKGROUND IMAGER , 2022 .

[54]  October I Physical Review Letters , 2022 .