Vector Finite Difference Modesolver for Anisotropic Dielectric Waveguides

We describe a new full-vector finite difference discretization, based upon the transverse magnetic field components, for calculating the electromagnetic modes of optical waveguides with transverse, nondiagonal anisotropy. Unlike earlier finite difference approaches, our method allows for the material axes to be arbitrarily oriented, as long as one of the principal axes coincides with the direction of propagation. We demonstrate the capabilities of the method by computing the circularly-polarized modes of a magnetooptical waveguide and the modes of an off-axis poled anisotropic polymer waveguide.

[1]  Manfred Hammer,et al.  Applications of magneto-optical waveguides in integrated optics: review , 2005 .

[2]  R.T. Chen,et al.  Optical circular-polarization modulator employing tilt-poled electrooptic polymers , 2004, Journal of Lightwave Technology.

[3]  V. Schulz Adjoint high-order vectorial finite elements for nonsymmetric transversally anisotropic waveguides , 2003 .

[4]  H. Hernández-Figueroa,et al.  Improved vectorial finite-element BPM analysis for transverse anisotropic media , 2003 .

[5]  S. Selleri,et al.  Full-vector finite-element beam propagation method for anisotropic optical device analysis , 2000, IEEE Journal of Quantum Electronics.

[6]  Seh-Won Ahn,et al.  Polarisation-independent phase modulator using electro-optic polymer , 2000 .

[7]  R. Scarmozzino,et al.  Numerical techniques for modeling guided-wave photonic devices , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  Masanori Koshiba,et al.  Finite element beam propagation method for anisotropic optical waveguides , 1999 .

[9]  O. Zhuromskyy,et al.  Phase-matched rectangular magnetooptic waveguides for applications in integrated optics isolators: numerical assessment , 1998 .

[10]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[11]  Jian-Ming Jin,et al.  Complex coordinate stretching as a generalized absorbing boundary condition , 1997 .

[12]  Min-Cheol Oh,et al.  TE-TM mode converter in a poled-polymer waveguide , 1996 .

[13]  Vectorial eigenmode calculation for anisotropic planar optical waveguides , 1996 .

[14]  Min-Cheol Oh,et al.  Simulation of polarization converter formed by poling-induced polymer waveguides , 1995 .

[15]  G. R. Hadley,et al.  Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions , 1995 .

[16]  J. Chrostowski,et al.  A full-vectorial beam propagation method for anisotropic waveguides , 1994 .

[17]  H. Unger,et al.  Analysis of vectorial mode fields in optical waveguides by a new finite difference method , 1994 .

[18]  C. Sobrinho,et al.  Analysis of biaxially anisotropic dielectric waveguides with Gaussian-Gaussian index of refraction profiles by the finite-difference method , 1993 .

[19]  Yilong Lu,et al.  An efficient finite element solution of inhomogeneous anisotropic and lossy dielectric waveguides , 1993 .

[20]  A. T. Galick,et al.  Iterative solution of the eigenvalue problem for a dielectric waveguide , 1992 .

[21]  H. Haus,et al.  Coupled-mode theory , 1991, Proc. IEEE.

[22]  Jin-Jei Wu,et al.  Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties , 1991 .

[23]  Yilong Lu,et al.  A variational finite element formulation for dielectric waveguides in terms of transverse magnetic fields , 1991 .

[24]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[25]  Weng Cho Chew,et al.  A variational analysis of anisotropic, inhomogeneous dielectric waveguides , 1989 .

[26]  Masanori Matsuhara,et al.  Finite-Element Analysis of Waveguide Modes: A Novel Approach that Eliminates Spurious Modes , 1987 .

[27]  Masanori Koshiba,et al.  Vectorial Finite-Element Method Without Any Spurious Solutions for Dielectric Waveguiding Problems Using Transverse Magnetic-Field Component , 1986 .

[28]  Fritz Arndt,et al.  Finite-Difference Analysis of Rectangular Dielectric Waveguide Structures , 1986 .

[29]  M. Koshiba,et al.  Approximate Scalar Finite-Element Analysis of Anisotropic Optical Waveguides with Off-Diagonal Elements in a Permittivity Tensor , 1984 .

[30]  L Thylen,et al.  Beam propagation method in anisotropic media. , 1982, Applied optics.