Nano-sized clusters of a teicoplanin ψ-aglycon-fullerene conjugate. Synthesis, antibacterial activity and aggregation studies.

[1]  Jodie L. Conyers,et al.  Biomedical applications of functionalized fullerene-based nanomaterials , 2009, International journal of nanomedicine.

[2]  Robert A. Domaoal,et al.  An antibody-recruiting small molecule that targets HIV gp120. , 2009, Journal of the American Chemical Society.

[3]  L. Naesens,et al.  Diazo transfer-click reaction route to new, lipophilic teicoplanin and ristocetin aglycon derivatives with high antibacterial and anti-influenza virus activity: an aggregation and receptor binding study. , 2009, Journal of medicinal chemistry.

[4]  Chunru Wang,et al.  Fullerene self-assembly and supramolecular nanostructures , 2009 .

[5]  J. Jekő,,et al.  Anti-influenza virus activity and structure–activity relationship of aglycoristocetin derivatives with cyclobutenedione carrying hydrophobic chains , 2009, Antiviral Research.

[6]  N. Woodford,et al.  Emergence and spread of vancomycin resistance among enterococci in Europe , 2008 .

[7]  J. Jekő,,et al.  A New Series of Glycopeptide Antibiotics Incorporating a Squaric Acid Moiety , 2006, The Journal of Antibiotics.

[8]  Krishna N. Ganesh,et al.  BisPNA Targeting to DNA: Effect of Neutral Loop on DNA Duplex Strand Invasion by aepPNA‐N7G/aepPNA‐C Substituted Peptide Nucleic Acids , 2005 .

[9]  C. Walsh,et al.  Glycopeptide and lipoglycopeptide antibiotics. , 2005, Chemical reviews.

[10]  A. Hirsch,et al.  Fullerenes: Chemistry and Reactions , 2005 .

[11]  J. Judice,et al.  Semi-synthetic glycopeptide antibacterials. , 2003, Bioorganic & medicinal chemistry letters.

[12]  A. Simas,et al.  Lack of evidence of dilution history-dependence upon solute aggregation in water. A nuclear magnetic resonance determination of self-diffusion coefficients , 2002 .

[13]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[14]  K. Geckeler,et al.  Unexpected solute aggregation in water on dilution. , 2001, Chemical communications.

[15]  R. Hughes,et al.  Synthesis and biological evaluation of vancomycin dimers with potent activity against vancomycin-resistant bacteria: target-accelerated combinatorial synthesis. , 2001, Chemistry.

[16]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[17]  George M. Whitesides,et al.  Design, Synthesis, and Characterization of a High-Affinity Trivalent System Derived from Vancomycin and l-Lys-d-Ala-d-Ala , 2000 .

[18]  K. Nicolaou,et al.  Chemistry, Biology, and Medicine of the Glycopeptide Antibiotics. , 1999, Angewandte Chemie.

[19]  M. Prato,et al.  Fulleropyrrolidines: A Family of Full-Fledged Fullerene Derivatives , 1998 .

[20]  T. Nicas,et al.  Structural modifications of glycopeptide antibiotics , 1997, Medicinal research reviews.

[21]  J. Griffin,et al.  Novel Vancomycin Dimers with Activity against Vancomycin-Resistant Enterococci , 1996 .

[22]  T. F. Butler,et al.  Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. , 1996, The Journal of antibiotics.

[23]  J. Ott,et al.  Synthesis and antibacterial evaluation of N-alkyl vancomycins. , 1989, The Journal of antibiotics.

[24]  T. Kinumi,et al.  Multi-valent polymer of vancomycin: enhanced antibacterial activity against VRE , 1999 .

[25]  C. Walsh,et al.  Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. , 1996, Chemistry & biology.

[26]  P. Courvalin,et al.  Genetics of glycopeptide resistance in enterococci. , 1996, Microbial drug resistance.