On the mechanism of field-induced mixed ionic–electronic transport during electro-thermal poling of a bioactive sodium–calcium phosphosilicate glass

[1]  B. Roling,et al.  Investigation of sodium ion depletion layers in electrothermally poled bioglasses by combining impedance spectroscopy with ToF-SIMS depth profiling , 2013 .

[2]  Thierry Cardinal,et al.  Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties , 2012 .

[3]  A. Bandyopadhyay,et al.  Influence of MgO, SrO, and ZnO Dopants on Electro-Thermal Polarization Behavior and In Vitro Biological Properties of Hydroxyapatite Ceramics , 2011 .

[4]  B. Roling,et al.  Electrochemical double layers at the interface between glassy electrolytes and platinum: Differentiating between the anode and the cathode capacitance , 2010 .

[5]  K. Richardson,et al.  How Does Thermal Poling Affect the Structure of Soda-Lime Glass? , 2010 .

[6]  A. Boccaccini,et al.  Bioactivity of electro-thermally poled bioactive silicate glass. , 2009, Acta biomaterialia.

[7]  B. Roling,et al.  Mechanism and Kinetics of Na+ Ion Depletion under the Anode during Electro-thermal Poling of a Bioactive Glass , 2008, 0810.0429.

[8]  Evelyne Fargin,et al.  Structural Rearrangements and Second-Order Optical Response in the Space Charge Layer of Thermally Poled Sodium−Niobium Borophosphate Glasses , 2007 .

[9]  B. Roling,et al.  Investigation of bioglass–electrode interfaces after thermal poling , 2007, 0709.0266.

[10]  M. Dussauze,et al.  Large second-harmonic generation of thermally poled sodium borophosphate glasses. , 2005, Optics express.

[11]  J. Knowles,et al.  Sol–gel synthesis of the P2O5–CaO–Na2O–SiO2 system as a novel bioresorbable glass , 2005 .

[12]  K. Yamashita,et al.  Concept and development of vector ceramics for bio-interface engineering , 2005 .

[13]  Melba Navarro,et al.  New macroporous calcium phosphate glass ceramic for guided bone regeneration. , 2004, Biomaterials.

[14]  K. Yamashita,et al.  Electrical polarization of bioactive glass and assessment of their in vitro apatite deposition. , 2003, Journal of biomedical materials research. Part A.

[15]  D. Krol,et al.  Second-order optical nonlinearities in thermally poled phosphate glasses , 2001 .

[16]  F. Pi,et al.  Double fitting of Maker fringes to characterize near-surface and bulk second-order nonlinearities in poled silica , 2000 .

[17]  K. Yamashita,et al.  Acceleration and Deceleration of Bone-Like Crystal Growth on Ceramic Hydroxyapatite by Electric Poling , 1996 .

[18]  D. Carlson,et al.  Ion Depletion of Glass at a Blocking Anode: II, Properties of Ion‐Depleted Glasses , 1974 .

[19]  D. Raleigh Comments oh charging and discharging currents in NaCl , 1974 .

[20]  J. Vermeer On the relation between ionic conductivity and breakdown strength of glass , 1956 .

[21]  K. J. Keller Breakdown and electric conductivity of glass , 1951 .