Near-Infrared Spectral Results of Asteroid Itokawa from the Hayabusa Spacecraft

The near-infrared spectrometer on board the Japanese Hayabusa spacecraft found a variation of more than 10% in albedo and absorption band depth in the surface reflectance of asteroid 25143 Itokawa. Spectral shape over the 1-micrometer absorption band indicates that the surface of this body has an olivine-rich mineral assemblage potentially similar to that of LL5 or LL6 chondrites. Diversity in the physical condition of Itokawa's surface appears to be larger than for other S-type asteroids previously explored by spacecraft, such as 433 Eros.

[1]  T. Hiroi,et al.  Estimation of grain sizes and mixing ratios of fine powder mixtures of common geologic minerals , 1994 .

[2]  M. A’Hearn,et al.  Photometric analysis of Eros from NEAR data , 2004 .

[3]  Yukio Yamamoto,et al.  X-ray Fluorescence Spectrometry of Asteroid Itokawa by Hayabusa , 2006, Science.

[4]  S. Lederer,et al.  Physical characteristics of Hayabusa target Asteroid 25143 Itokawa , 2005 .

[5]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[6]  Richard P. Binzel,et al.  MUSES‐C target asteroid (25143) 1998 SF36: A reddened ordinary chondrite , 2001 .

[7]  Thermal infrared observations of the Hayabusa spacecraft target asteroid 25143 Itokawa , 2005, astro-ph/0509434.

[8]  A. Fujiwara,et al.  Near-Infrared Observations of MUSES-C Mission Target , 2003 .

[9]  Makoto Yoshikawa,et al.  Dynamical origin of the asteroid (25143) Itokawa: the target of the sample-return Hayabusa space mission , 2006 .

[10]  Carle M. Pieters,et al.  Determining the composition of olivine from reflectance spectroscopy , 1998 .

[11]  J. Terazono,et al.  Detailed Images of Asteroid 25143 Itokawa from Hayabusa , 2006, Science.

[12]  Gabriele Arnold,et al.  A Model of Spectral Albedo of Particulate Surfaces: Implications for Optical Properties of the Moon , 1999 .

[13]  B. Clark Spectral mixing models of S‐type asteroids , 1995 .

[14]  S. Murchie,et al.  Space weathering on Eros: Constraints from albedo and spectral measurements of Psyche crater , 2001 .

[15]  Matthias Schnaubelt,et al.  Mineralogical interpretation of reflectance spectra of Eros from NEAR near‐infrared spectrometer low phase flyby , 2001 .

[16]  Deborah L. Domingue,et al.  NEAR Infrared Spectrometer Photometry of Asteroid 433 Eros , 2002 .

[17]  J. Bell,et al.  Spectral properties and geologic processes on Eros from combined NEAR NIS and MSI data sets , 2003 .

[18]  Budi Dermawan,et al.  Thermal observations of MUSES-C mission target (25143) 1998 SF$_\mathsf{36}$ , 2003 .

[19]  B. Hapke Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect , 1986 .

[20]  Kazuya Yoshida,et al.  Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa , 2006, Science.

[21]  K. Al-Bassam THE MINERALOGY AND CHEMISTRY OF THE ALTA'AMEEM METEORITE , 1978 .

[22]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[23]  A. Rivkin,et al.  Infrared spectroscopic observations of 69230 Hermes (1937 UB): possible unweathered endmember among ordinary chondrite analogs , 2004 .