Complexity of Evolving Interactive Systems

We study a versatile model of evolving interactive computing: lineages of automata. A lineage consists of a sequence of interactive finite automata, with a mechanism of passing information from each automaton to its immediate successor. Lineages enable a definition of a suitable complexity measure for evolving systems. We show several complexity results, including a hierarchy result.

[1]  B. Engquist,et al.  Mathematics Unlimited: 2001 and Beyond , 2001 .

[2]  Wolfgang Banzhaf,et al.  Advances in Artificial Life , 2003, Lecture Notes in Computer Science.

[3]  Peter Wegner,et al.  New Models of Computation , 2004, Comput. J..

[4]  Jan van Leeuwen,et al.  On Algorithms and Interaction , 2000, MFCS.

[5]  Daniel L. McCue,et al.  A case for document management functions on the Web , 1997, CACM.

[6]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[7]  William I. Gasarch,et al.  Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.

[8]  Jan van Leeuwen,et al.  The emergent computational potential of evolving artificial living systems , 2002, AI Commun..

[9]  Peter Wegner,et al.  Why interaction is more powerful than algorithms , 1997, CACM.

[10]  Leszek Pacholski,et al.  SOFSEM 2001: Theory and Practice of Informatics , 2001, Lecture Notes in Computer Science.

[11]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[12]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[13]  Peter Wegner,et al.  Computation beyond turing machines , 2003, CACM.

[14]  J. van Leeuwen,et al.  A computational model of interaction in embedded systems , 2001 .

[15]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[16]  Lawrence H. Landweber,et al.  Decision problems forω-automata , 1969, Mathematical systems theory.

[17]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[18]  Mogens Nielsen,et al.  Mathematical Foundations of Computer Science 2000 , 2001, Lecture Notes in Computer Science.

[19]  Jan van Leeuwen,et al.  Emergence of a Super-Turing Computational Potential in Artificial Living Systems , 2001, ECAL.

[20]  J. van Leeuwen,et al.  Lineages of automata , 2003 .

[21]  Jan van Leeuwen,et al.  The Turing machine paradigm in contemporary computing , 2001 .

[22]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[23]  Jan van Leeuwen,et al.  Beyond the Turing Limit: Evolving Interactive Systems , 2001, SOFSEM.