Manipulating light absorption of graphene using plasmonic nanoparticles.

We present the incorporation of periodic gold nanoparticle arrays into graphene-based photodetectors to enhance and tune light absorption of graphene. By the use of electromagnetic simulations, we show that light absorption in graphene can be manipulated by tuning plasmonic resonance. A maximum absorption of 30.3% with a full width of 135 nm at half maximum is achieved through systematic optimization of nanostructures.

[1]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[2]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[3]  P. Ajayan,et al.  Plasmon-induced doping of graphene. , 2012, ACS nano.

[4]  Junhao Chu,et al.  Structural and optical properties of LuFeO3 thin films prepared on silicon (100) substrate by pulsed laser deposition , 2012, Other Conferences.

[5]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[6]  K. Novoselov,et al.  Strong plasmonic enhancement of photovoltage in graphene. , 2011, Nature communications.

[7]  Kang L. Wang,et al.  Transparent and flexible graphene charge-trap memory. , 2012, ACS nano.

[8]  Pieter G. Kik,et al.  SURFACE PLASMON NANOPHOTONICS , 2007 .

[9]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[10]  Stefano Borini,et al.  Optical constants of graphene layers in the visible range , 2009 .

[11]  Hongkun Park,et al.  Gate-activated photoresponse in a graphene p-n junction. , 2010, Nano letters.

[12]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[13]  Kang L. Wang,et al.  E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model. , 2012, Optics express.

[14]  Zhe Wu,et al.  Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres , 2011 .

[15]  K. Loh,et al.  Graphene photonics, plasmonics, and broadband optoelectronic devices. , 2012, ACS nano.

[16]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .

[17]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[18]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[19]  X. Duan,et al.  Plasmon resonance enhanced multicolour photodetection by graphene. , 2011, Nature communications.

[20]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[21]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[22]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[23]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[24]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[25]  Peter Nordlander,et al.  Graphene-antenna sandwich photodetector. , 2012, Nano letters.

[26]  Mei Xue,et al.  Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles. , 2012, Nanoscale.