Multi-atlas segmentation of biomedical images: A survey

Multi-atlas segmentation (MAS), first introduced and popularized by the pioneering work of Rohlfing, et al. (2004), Klein, et al. (2005), and Heckemann, et al. (2006), is becoming one of the most widely-used and successful image segmentation techniques in biomedical applications. By manipulating and utilizing the entire dataset of "atlases" (training images that have been previously labeled, e.g., manually by an expert), rather than some model-based average representation, MAS has the flexibility to better capture anatomical variation, thus offering superior segmentation accuracy. This benefit, however, typically comes at a high computational cost. Recent advancements in computer hardware and image processing software have been instrumental in addressing this challenge and facilitated the wide adoption of MAS. Today, MAS has come a long way and the approach includes a wide array of sophisticated algorithms that employ ideas from machine learning, probabilistic modeling, optimization, and computer vision, among other fields. This paper presents a survey of published MAS algorithms and studies that have applied these methods to various biomedical problems. In writing this survey, we have three distinct aims. Our primary goal is to document how MAS was originally conceived, later evolved, and now relates to alternative methods. Second, this paper is intended to be a detailed reference of past research activity in MAS, which now spans over a decade (2003-2014) and entails novel methodological developments and application-specific solutions. Finally, our goal is to also present a perspective on the future of MAS, which, we believe, will be one of the dominant approaches in biomedical image segmentation.

[1]  Mert R. Sabuncu,et al.  Robust Atlas-Based Segmentation of Highly Variable Anatomy: Left Atrium Segmentation , 2010, STACOM/CESC.

[2]  B. M. Dawant,et al.  Estimation of Registration Accuracy Applied to Multi-Atlas Segmentation , 2011 .

[3]  Simon K. Warfield,et al.  SoftSTAPLE: Truth and performance-level estimation from probabilistic segmentations , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[4]  M. Mallar Chakravarty,et al.  Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates , 2014, NeuroImage.

[5]  Sébastien Ourselin,et al.  Whole Heart Segmentation of Cardiac MRI Using Multiple Path Propagation Strategy , 2010, MICCAI.

[6]  Martin Styner,et al.  Multi-atlas segmentation with particle-based group-wise image registration , 2014, Medical Imaging.

[7]  Daniel Rueckert,et al.  Automatic detection and quantification of hippocampal atrophy on MRI in temporal lobe epilepsy: A proof-of-principle study , 2007, NeuroImage.

[8]  Brian R. Tietz,et al.  Deciding Which Way to Go: How Do Insects Alter Movements to Negotiate Barriers? , 2012, Front. Neurosci..

[9]  M. Mallar Chakravarty,et al.  Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates , 2014, NeuroImage.

[10]  Simon K. Warfield,et al.  A Logarithmic Opinion Pool Based STAPLE Algorithm for the Fusion of Segmentations With Associated Reliability Weights , 2014, IEEE Transactions on Medical Imaging.

[11]  Dinggang Shen,et al.  Groupwise Segmentation Improves Neuroimaging Classification Accuracy , 2012, MBIA.

[12]  Daniel Rueckert,et al.  Magnetic Resonance Imaging of the Newborn Brain: Automatic Segmentation of Brain Images into 50 Anatomical Regions , 2013, PloS one.

[13]  Paul A. Yushkevich,et al.  Multi-atlas Segmentation without Registration: A Supervoxel-Based Approach , 2013, MICCAI.

[14]  Daniel Rueckert,et al.  Multi-atlas propagation via a manifold graph on a database of both labeled and unlabeled images , 2014, Medical Imaging.

[15]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[16]  Bennett A Landman,et al.  Non-local statistical label fusion for multi-atlas segmentation , 2013, Medical Image Anal..

[17]  Max A. Viergever,et al.  Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus , 2010, Medical Image Anal..

[18]  Daniel Rueckert,et al.  Automatic volumetry can reveal visually undetected disease features on brain MR images in temporal lobe epilepsy , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[19]  Anneke Meyer Multi-atlas Based Segmentation of Corpus Callosum on MRIs of Multiple Sclerosis Patients , 2014, GCPR.

[20]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[21]  Paul A. Yushkevich,et al.  Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling , 2014, Medical Image Anal..

[22]  Sébastien Ourselin,et al.  STEPS: Similarity and Truth Estimation for Propagated Segmentations and its application to hippocampal segmentation and brain parcelation , 2013, Medical Image Anal..

[23]  Dimitris N. Metaxas,et al.  Accurate Whole-Brain Segmentation for Alzheimer's Disease Combining an Adaptive Statistical Atlas and Multi-atlas , 2013, MCV.

[24]  Tobias Gass,et al.  Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas , 2012, MCV.

[25]  Yaozong Gao,et al.  Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation , 2014, NeuroImage.

[26]  Torsten Rohlfing,et al.  Expectation Maximization Strategies for Multi-atlas Multi-label Segmentation , 2003, IPMI.

[27]  June-Goo Lee,et al.  Fully automated segmentation of cartilage from the MR images of knee using a multi-atlas and local structural analysis method. , 2014, Medical physics.

[28]  James S. Duncan,et al.  Medical Image Analysis , 1999, IEEE Pulse.

[29]  Daniel Rueckert,et al.  Automated morphological analysis of magnetic resonance brain imaging using spectral analysis , 2008, NeuroImage.

[30]  Christian Wachinger,et al.  Atlas-Based Under-Segmentation , 2014, MICCAI.

[31]  Sebastien Ourselin,et al.  Automated hippocampal segmentation in patients with epilepsy: Available free online , 2013, Epilepsia.

[32]  Lena Maier-Hein,et al.  Crowdsourcing for Reference Correspondence Generation in Endoscopic Images , 2014, MICCAI.

[33]  Cameron S. Carter,et al.  Optimum template selection for atlas-based segmentation , 2007, NeuroImage.

[34]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[35]  Max A. Viergever,et al.  Multi-Atlas-Based Segmentation With Local Decision Fusion—Application to Cardiac and Aortic Segmentation in CT Scans , 2009, IEEE Transactions on Medical Imaging.

[36]  Christos Davatzikos,et al.  Attribute Similarity and Mutual-Saliency Weighting for Registration and Label Fusion , 2012 .

[37]  Ben Glocker,et al.  Neighbourhood approximation using randomized forests , 2013, Medical Image Anal..

[38]  Cecilia Sjöberg,et al.  Multi-atlas based segmentation using probabilistic label fusion with adaptive weighting of image similarity measures , 2013, Comput. Methods Programs Biomed..

[39]  Mert R. Sabuncu,et al.  An algorithm for optimal fusion of atlases with different labeling protocols , 2015, NeuroImage.

[40]  Daniel Rueckert,et al.  Graph-Based Label Propagation in Fetal Brain MR Images , 2014, MLMI.

[41]  David A. Clausi,et al.  Cross modality label fusion in multi-atlas segmentation , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[42]  Daniel Rueckert,et al.  The mirror method of assessing segmentation quality in atlas label propagation , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[43]  Daniel Rueckert,et al.  Multi-atlas based neointima segmentation in intravascular coronary OCT , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[44]  Jerry L. Prince,et al.  Foibles, follies, and fusion: Web-based collaboration for medical image labeling , 2012, NeuroImage.

[45]  Huazhong Shu,et al.  Automatic left ventricle segmentation based on multiatlas registration in 4D CT images , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[46]  Nicolas Costes,et al.  A Multi-Atlas Based Method for Automated Anatomical Rat Brain MRI Segmentation and Extraction of PET Activity , 2014, PloS one.

[47]  D. Louis Collins,et al.  Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation , 2011, NeuroImage.

[48]  Zhuowen Tu,et al.  Synthetic MRI Signal Standardization: Application to Multi-atlas Analysis , 2010, MICCAI.

[49]  Dinggang Shen,et al.  Iterative multi-atlas-based multi-image segmentation with tree-based registration , 2012, NeuroImage.

[50]  Bo Li,et al.  Shape-constrained multi-atlas segmentation of spleen in CT , 2014, Medical Imaging.

[51]  Anqi Qiu,et al.  Atlas-based automatic mouse brain image segmentation revisited: model complexity vs. image registration. , 2012, Magnetic resonance imaging.

[52]  Jerry L. Prince,et al.  Approaching expert results using a hierarchical cerebellum parcellation protocol for multiple inexpert human raters , 2013, NeuroImage.

[53]  Marc Modat,et al.  Multi Atlas Segmentation applied to in vivo mouse brain MRI , 2012 .

[54]  Nicolas Cherbuin,et al.  Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): Validation on hippocampus segmentation , 2011, NeuroImage.

[55]  Nassir Navab,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013 , 2013, Lecture Notes in Computer Science.

[56]  Benoit M. Dawant,et al.  The adaptive bases algorithm for intensity-based nonrigid image registration , 2003, IEEE Transactions on Medical Imaging.

[57]  Michael Weiner,et al.  Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI , 2010, NeuroImage.

[58]  Boris C. Bernhardt,et al.  Automatic hippocampal segmentation in temporal lobe epilepsy: Impact of developmental abnormalities , 2012, NeuroImage.

[59]  Alexander Hammers,et al.  Reproducibility of thalamic segmentation based on probabilistic tractography , 2010, NeuroImage.

[60]  Arrate Muñoz-Barrutia,et al.  Efficient classifier generation and weighted voting for atlas-based segmentation: two small steps faster and closer to the combination oracle , 2008, SPIE Medical Imaging.

[61]  Leif H. Finkel,et al.  CURRENT METHODS IN MEDICAL IMAGE SEGMENTATION1 , 2007 .

[62]  Richard M. Leahy,et al.  Surface-based labeling of cortical anatomy using a deformable atlas , 1997, IEEE Transactions on Medical Imaging.

[63]  Bennett A. Landman,et al.  Statistical label fusion with hierarchical performance models , 2014, Medical Imaging.

[64]  Terry M. Peters,et al.  Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003 , 2003, Lecture Notes in Computer Science.

[65]  Xuelong Li,et al.  Multi-atlas Based Image Selection with Label Image Constraint , 2012, 2012 11th International Conference on Machine Learning and Applications.

[66]  Torsten Rohlfing,et al.  Multi-classifier framework for atlas-based image segmentation , 2005, Pattern Recognit. Lett..

[67]  Jerry L Prince,et al.  Current methods in medical image segmentation. , 2000, Annual review of biomedical engineering.

[68]  Daniel Rueckert,et al.  Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy , 2009, NeuroImage.

[69]  Anders Ahnesjö,et al.  How much will linked deformable registrations decrease the quality of multi-atlas segmentation fusions? , 2014, Radiation oncology.

[70]  Hamid Soltanian-Zadeh,et al.  Multiple-atlas-based automatic sementation of hippocampus for lateralization in temporal lobe epilepsy , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[71]  Norbert Schuff,et al.  Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease , 2010, NeuroImage.

[72]  Benoit M. Dawant,et al.  Applying the algorithm "assessing quality using image registration circuits" (AQUIRC) to multi-atlas segmentation , 2014, Medical Imaging.

[73]  Pradeep Reddy Raamana,et al.  Three-Class Differential Diagnosis among Alzheimer Disease, Frontotemporal Dementia, and Controls , 2014, Front. Neurol..

[74]  William R. Crum,et al.  Spectral Clustering and Label Fusion For 3D Tissue Classification: Sensitivity and Consistency Analysis , 2009 .

[75]  Grégoire Malandain,et al.  Efficient Selection of the Most Similar Image in a Database for Critical Structures Segmentation , 2007, MICCAI.

[76]  Shu Liao,et al.  Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization. , 2014, Medical physics.

[77]  Benoit M. Dawant,et al.  Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations. I. Methodology and validation on normal subjects , 1999, IEEE Transactions on Medical Imaging.

[78]  Colin Studholme,et al.  A Supervised Patch-Based Approach for Human Brain Labeling , 2011, IEEE Transactions on Medical Imaging.

[79]  Martha Elizabeth Shenton,et al.  On evaluating brain tissue classifiers without a ground truth , 2007, NeuroImage.

[80]  Simon K. Warfield,et al.  Learning Likelihoods for Labeling (L3): A General Multi-Classifier Segmentation Algorithm , 2011, MICCAI.

[81]  Nico Karssemeijer,et al.  Robust Initial Detection of Landmarks in Film-Screen Mammograms Using Multiple FFDM Atlases , 2009, IEEE Transactions on Medical Imaging.

[82]  Paul A. Yushkevich,et al.  Multi-atlas Segmentation with Robust Label Transfer and Label Fusion , 2013, IPMI.

[83]  Nikos Paragios,et al.  Discrete Multi Atlas Segmentation using Agreement Constraints , 2014, BMVC.

[84]  Josien P. W. Pluim,et al.  Fast Multiatlas Selection Using Composition of Transformations for Radiation Therapy Planning , 2014, MCV.

[85]  D. Collins,et al.  Performing label‐fusion‐based segmentation using multiple automatically generated templates , 2013, Human brain mapping.

[86]  Jyrki Lötjönen,et al.  Measuring atrophy by simultaneous segmentation of serial MR images using 4-D graph-cuts , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[87]  Suyash P. Awate,et al.  Multiatlas Segmentation as Nonparametric Regression , 2014, IEEE Transactions on Medical Imaging.

[88]  Linda G Shapiro,et al.  Head and neck lymph node region delineation with image registration , 2010, Biomedical engineering online.

[89]  WangHongzhi,et al.  Multi-Atlas Segmentation with Joint Label Fusion , 2013 .

[90]  Paul A. Yushkevich,et al.  Guiding Automatic Segmentation with Multiple Manual Segmentations , 2012, MICCAI.

[91]  Seth A. Smith,et al.  Evaluation of multiatlas label fusion for in vivo magnetic resonance imaging orbital segmentation , 2014 .

[92]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[93]  Simon Ameer-Beg,et al.  Biomedical Imaging: From Nano to Macro , 2008 .

[94]  Daoqiang Zhang,et al.  Sparse Patch-Based Label Fusion for Multi-Atlas Segmentation , 2012, MBIA.

[95]  Daniel Rueckert,et al.  Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest , 2008, NeuroImage.

[96]  Martin Styner,et al.  Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline , 2014, Front. Neuroinform..

[97]  D. Louis Collins,et al.  Optimized PatchMatch for Near Real Time and Accurate Label Fusion , 2014, MICCAI.

[98]  Polina Golland,et al.  Spectral Label Fusion , 2012, MICCAI.

[99]  Ronald M. Summers,et al.  Detection and station mapping of mediastinal lymph nodes on thoracic computed tomography using spatial prior from multi-atlas label fusion , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[100]  Paul A. Yushkevich,et al.  Groupwise Segmentation with Multi-atlas Joint Label Fusion , 2013, MICCAI.

[101]  Bennett A Landman,et al.  Self-assessed performance improves statistical fusion of image labels. , 2014, Medical physics.

[102]  Xiaoying Tang,et al.  Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model , 2013, PloS one.

[103]  Brian B. Avants,et al.  Robust Automated Amygdala Segmentation via Multi-Atlas Diffeomorphic Registration , 2012, Front. Neurosci..

[104]  Tianzi Jiang,et al.  Local label learning (LLL) for subcortical structure segmentation: Application to hippocampus segmentation , 2014, Human brain mapping.

[105]  Josien P. W. Pluim,et al.  Local atlas selection and performance estimation in multi-atlas based segmentation , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[106]  Dinggang Shen,et al.  Automated Segmentation of Mouse Brain Images Using Multi-Atlas Multi-ROI Deformation and Label Fusion , 2012, Neuroinformatics.

[107]  Pascal Haigron,et al.  Multi-Atlas-Based Segmentation of Pelvic Structures from CT Scans for Planning in Prostate Cancer Radiotherapy , 2014 .

[108]  Simon K. Warfield,et al.  Estimating A Reference Standard Segmentation With Spatially Varying Performance Parameters: Local MAP STAPLE , 2012, IEEE Transactions on Medical Imaging.

[109]  Daniel Rueckert,et al.  Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation , 2010, NeuroImage.

[110]  Abbas F. Sadikot,et al.  Patch-based label fusion segmentation of brainstem structures with dual-contrast MRI for Parkinson’s disease , 2015, International Journal of Computer Assisted Radiology and Surgery.

[111]  Daniel Rueckert,et al.  Automatic morphometry in Alzheimer's disease and mild cognitive impairment☆☆☆ , 2011, NeuroImage.

[112]  Paul A. Yushkevich,et al.  Fully automatic segmentation of the open mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas label fusion and deformable medial modeling , 2012, 2012 IEEE International Ultrasonics Symposium.

[113]  Sébastien Ourselin,et al.  Multi-atlas based pathological stratification of D-TGA congenital heart disease , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[114]  Nicholas Ayache,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012 , 2012, Lecture Notes in Computer Science.

[115]  Polina Golland,et al.  Towards Effcient Label Fusion by Pre-Alignment of Training Data. , 2011, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention.

[116]  Hyunjin Park,et al.  Construction of an abdominal probabilistic atlas and its application in segmentation , 2003, IEEE Transactions on Medical Imaging.

[117]  Grégoire Malandain,et al.  Construction of Patient Specific Atlases from Locally Most Similar Anatomical Pieces , 2010, MICCAI.

[118]  Juha Koikkalainen,et al.  Fast and robust multi-atlas segmentation of brain magnetic resonance images , 2010, NeuroImage.

[119]  José G. Tamez-Peña,et al.  Unsupervised Segmentation and Quantification of Anatomical Knee Features: Data From the Osteoarthritis Initiative , 2012, IEEE Transactions on Biomedical Engineering.

[120]  Yoshua Bengio,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.

[121]  Eduard Schreibmann,et al.  Multiatlas segmentation of thoracic and abdominal anatomy with level set‐based local search , 2014, Journal of applied clinical medical physics.

[122]  Nicolas Guizard,et al.  Investigation of morphometric variability of subthalamic nucleus, red nucleus, and substantia nigra in advanced Parkinson's disease patients using automatic segmentation and PCA‐based analysis , 2014, Human brain mapping.

[123]  Sébastien Ourselin,et al.  Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion , 2014, PloS one.

[124]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[125]  Tobias Gass,et al.  Segmentation and Landmark Localization Based on Multiple Atlases , 2014 .

[126]  Nico Karssemeijer,et al.  Computer-Aided Detection of Prostate Cancer in MRI , 2014, IEEE Transactions on Medical Imaging.

[127]  Mark Jenkinson,et al.  Evaluation of Hippocampal Segmentation Methods for Healthy and Pathological Subjects , 2010, VCBM.

[128]  Paul A. Yushkevich,et al.  Spatial bias in multi-atlas based segmentation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[129]  Konstantinos Arfanakis,et al.  Ex vivo MR volumetry of human brain hemispheres , 2014, Magnetic resonance in medicine.

[130]  Bruce Fischl,et al.  Within-subject template estimation for unbiased longitudinal image analysis , 2012, NeuroImage.

[131]  Shu Liao,et al.  Automated Segmentation of CBCT Image Using Spiral CT Atlases and Convex Optimization , 2013, MICCAI.

[132]  Yaozong Gao,et al.  Learning to Rank Atlases for Multiple-Atlas Segmentation , 2014, IEEE Transactions on Medical Imaging.

[133]  Xiao Han,et al.  Automatic Segmentation of Parotids in Head and Neck CT Images using Multi-atlas Fusion , 2010 .

[134]  Josien P W Pluim,et al.  Multiatlas-based segmentation with preregistration atlas selection. , 2013, Medical physics.

[135]  Torsten Rohlfing,et al.  Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains , 2004, NeuroImage.

[136]  Benjamin S Aribisala,et al.  Assessing the Performance of Atlas-Based Prefrontal Brain Parcellation in an Aging Cohort , 2013, Journal of computer assisted tomography.

[137]  Purang Abolmaesumi,et al.  A Multi-Atlas-Based Segmentation Framework for Prostate Brachytherapy , 2015, IEEE Transactions on Medical Imaging.

[138]  Carlos Ortiz-de-Solorzano,et al.  Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data , 2009, IEEE Transactions on Medical Imaging.

[139]  Bennett A Landman,et al.  Robust optic nerve segmentation on clinically acquired computed tomography , 2014, Journal of medical imaging.

[140]  Carlos Platero Dueñas,et al.  A new label fusion method using graph cuts: application to hippocampus segmentation , 2014 .

[141]  Nico Karssemeijer,et al.  Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches , 2012, MICCAI.

[142]  Ben Glocker,et al.  Geodesic Patch-Based Segmentation , 2014, MICCAI.

[143]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[144]  Wiro J. Niessen,et al.  Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts , 2008, NeuroImage.

[145]  Daniel Rueckert,et al.  LEAP: Learning embeddings for atlas propagation , 2010, NeuroImage.

[146]  Simon K. Warfield,et al.  Using Frankenstein's Creature Paradigm to Build a Patient Specific Atlas , 2009, MICCAI.

[147]  Bennett A. Landman,et al.  Formulating Spatially Varying Performance in the Statistical Fusion Framework , 2012, IEEE Transactions on Medical Imaging.

[148]  Jerry L. Prince,et al.  Robust Statistical Fusion of Image Labels , 2012, IEEE Transactions on Medical Imaging.

[149]  Rolf A Heckemann,et al.  Amygdalar atrophy in early Alzheimer's disease. , 2014, Current Alzheimer research.

[150]  Babak A. Ardekani,et al.  Corpus callosum shape changes in early Alzheimer’s disease: an MRI study using the OASIS brain database , 2013, Brain Structure and Function.

[151]  Daoqiang Zhang,et al.  A generative probability model of joint label fusion for multi-atlas based brain segmentation , 2014, Medical Image Anal..

[152]  Magnus Borga,et al.  Automatic and quantitative assessment of regional muscle volume by multi‐atlas segmentation using whole‐body water–fat MRI , 2015, Journal of magnetic resonance imaging : JMRI.

[153]  W. Eric L. Grimson,et al.  Segmentation of brain tissue from magnetic resonance images , 1995, Medical Image Anal..

[154]  Bennett A. Landman,et al.  Robust Statistical Label Fusion Through Consensus Level, Labeler Accuracy, and Truth Estimation (COLLATE) , 2011, IEEE Transactions on Medical Imaging.

[155]  Daniel Rueckert,et al.  A Probabilistic Patch-Based Label Fusion Model for Multi-Atlas Segmentation With Registration Refinement: Application to Cardiac MR Images , 2013, IEEE Transactions on Medical Imaging.

[156]  Dinggang Shen,et al.  Novel Multi-Atlas Segmentation by Matrix Completion , 2014, MLMI.

[157]  Daniel Rueckert,et al.  Measurements of medial temporal lobe atrophy for prediction of Alzheimer's disease in subjects with mild cognitive impairment , 2013, Neurobiology of Aging.

[158]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[159]  Pascal Haigron,et al.  Evaluation of multi-atlas-based segmentation of CT scans in prostate cancer radiotherapy , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[160]  Daniel Rueckert,et al.  Automatic Whole Brain MRI Segmentation of the Developing Neonatal Brain , 2014, IEEE Transactions on Medical Imaging.

[161]  Dan Ruan,et al.  Low-complexity atlas-based prostate segmentation by combining global, regional, and local metrics. , 2014, Medical physics.

[162]  Dinggang Shen,et al.  Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation , 2010, NeuroImage.

[163]  Xuelong Li,et al.  Putting images on a manifold for atlas-based image segmentation , 2011, 2011 18th IEEE International Conference on Image Processing.

[164]  Brian B. Avants,et al.  The optimal template effect in hippocampus studies of diseased populations , 2010, NeuroImage.

[165]  Xiao Han Learning-Boosted Label Fusion for Multi-atlas Auto-Segmentation , 2013, MLMI.

[166]  Purang Abolmaesumi,et al.  An Automatic Multi-atlas Segmentation of the Prostate in Transrectal Ultrasound Images Using Pairwise Atlas Shape Similarity , 2013, MICCAI.

[167]  Dinggang Shen,et al.  Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants , 2014, Medical Image Anal..

[168]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[169]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[170]  Sébastien Ourselin,et al.  Using Manifold Learning for Atlas Selection in Multi-Atlas Segmentation , 2013, PloS one.

[171]  Daniel Rueckert,et al.  Atlas selection strategy for automatic segmentation of pediatric brain MRIs into 83 ROIs , 2010, 2010 IEEE International Conference on Imaging Systems and Techniques.

[172]  B. Ginneken,et al.  3D Segmentation in the Clinic: A Grand Challenge , 2007 .

[173]  Tianzi Jiang,et al.  Iterative multi-atlas based segmentation with multi-channel image registration and Jackknife Context Model , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[174]  Nassir Navab,et al.  Dense image registration through MRFs and efficient linear programming , 2008, Medical Image Anal..

[175]  Paul M. Thompson,et al.  Automated Ventricular Mapping with Multi-atlas Fluid Image Alignment Reveals Genetic Effects in Alzheimer's Disease , 2007 .

[176]  Nikos Paragios,et al.  DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting , 2009, IPMI.

[177]  Mark W. Woolrich,et al.  Probabilistic Segmentation Propagation from Uncertainty in Registration , 2011, MIUA.

[178]  Olaf B. Paulson,et al.  MR-based automatic delineation of volumes of interest in human brain PET images using probability maps , 2005, NeuroImage.

[179]  Mert R. Sabuncu,et al.  Supervised Nonparametric Image Parcellation , 2009, MICCAI.

[180]  Bennett A. Landman,et al.  SIMPLE Is a Good Idea (and Better with Context Learning) , 2014, MICCAI.

[181]  Yu Cao,et al.  Multi-atlas Segmentation with Learning-Based Label Fusion , 2014, MLMI.

[182]  Olivier Salvado,et al.  Supervised method to build an atlas database for multi-atlas segmentation-propagation , 2010, Medical Imaging.

[183]  B. van Ginneken,et al.  Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. , 2009, Medical physics.

[184]  John Pluta,et al.  In vivo analysis of hippocampal subfield atrophy in mild cognitive impairment via semi-automatic segmentation of T2-weighted MRI. , 2012, Journal of Alzheimer's disease : JAD.

[185]  Mert R. Sabuncu,et al.  A Probabilistic, Non-parametric Framework for Inter-modality Label Fusion , 2013, MICCAI.

[186]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[187]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[188]  Simon K. Warfield,et al.  Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly , 2012, NeuroImage.

[189]  Daoqiang Zhang,et al.  Confidence-Guided Sequential Label Fusion for Multi-atlas Based Segmentation , 2011, MICCAI.

[190]  Yaozong Gao,et al.  Segmentation of neonatal brain MR images using patch-driven level sets , 2014, NeuroImage.

[191]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[192]  C. Davatzikos Spatial normalization of 3D brain images using deformable models. , 1996, Journal of computer assisted tomography.

[193]  Lei Dong,et al.  Automatic Segmentation of Parotids from CT Scans Using Multiple Atlases , 2010 .

[194]  Xiao Han,et al.  Atlas-Based Auto-segmentation of Head and Neck CT Images , 2008, MICCAI.

[195]  Xiao Han,et al.  GPU-accelerated, gradient-free MI deformable registration for atlas-based MR brain image segmentation , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[196]  Carlos Platero,et al.  A Multiatlas Segmentation Using Graph Cuts with Applications to Liver Segmentation in CT Scans , 2014, Comput. Math. Methods Medicine.

[197]  Clement J. McDonald,et al.  Lung Segmentation in Chest Radiographs Using Anatomical Atlases With Nonrigid Registration , 2014, IEEE Transactions on Medical Imaging.

[198]  Torsten Rohlfing,et al.  Multi-classifier framework for atlas-based image segmentation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[199]  Ron Kikinis,et al.  3D Slicer , 2012, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[200]  Torsten Rohlfing,et al.  An Expectation Maximization-Like Algorithm for Multi-Atlas Multi-Label Segmentation , 2003, Bildverarbeitung für die Medizin.

[201]  Bennett A Landman,et al.  Out-of-atlas likelihood estimation using multi-atlas segmentation. , 2013, Medical physics.

[202]  Sébastien Ourselin,et al.  Brain MAPS: An automated, accurate and robust brain extraction technique using a template library , 2011, NeuroImage.

[203]  Bram van Ginneken,et al.  A multi-atlas approach to automatic segmentation of the caudate nucleus in MR brain images , 2007 .

[204]  Stefan Klein,et al.  Automated Brain Structure Segmentation Based on Atlas Registration and Appearance Models , 2012, IEEE Transactions on Medical Imaging.

[205]  Andrew Blake,et al.  GeoS: Geodesic Image Segmentation , 2008, ECCV.

[206]  Mert R. Sabuncu,et al.  Effects of registration regularization and atlas sharpness on segmentation accuracy , 2008, Medical Image Anal..

[207]  Xiaoying Tang,et al.  Multi-Contrast Multi-Atlas Parcellation of Diffusion Tensor Imaging of the Human Brain , 2014, PloS one.

[208]  Grégoire Malandain,et al.  Assessing selection methods in the context of multi-atlas based segmentation , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[209]  Huazhong Shu,et al.  Automatic kidney segmentation in CT images based on multi-atlas image registration , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[210]  Daniel Rueckert,et al.  Segmentation of subcortical structures and the hippocampus in brain MRI using graph-cuts and subject-specific a-priori information , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[211]  Mert R. Sabuncu,et al.  Learning Task-Optimal Registration Cost Functions for Localizing Cytoarchitecture and Function in the Cerebral Cortex , 2010, IEEE Transactions on Medical Imaging.

[212]  Torsten Rohlfing,et al.  Segmentation of three-dimensional images using non-rigid registration: methods and validation with application to confocal microscopy images of bee brains , 2003, SPIE Medical Imaging.

[213]  Meritxell Bach Cuadra,et al.  Weighted Shape-Based Averaging With Neighborhood Prior Model for Multiple Atlas Fusion-Based Medical Image Segmentation , 2013, IEEE Signal Processing Letters.

[214]  Xuelong Li,et al.  Segmenting Images by Combining Selected Atlases on Manifold , 2011, MICCAI.

[215]  Shaoting Zhang,et al.  Medical Computer Vision: Algorithms for Big Data , 2015, Lecture Notes in Computer Science.

[216]  Max A. Viergever,et al.  Label Fusion in Atlas-Based Segmentation Using a Selective and Iterative Method for Performance Level Estimation (SIMPLE) , 2010, IEEE Transactions on Medical Imaging.

[217]  Christopher J. Taylor,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009 , 2009, Lecture Notes in Computer Science.

[218]  Wiro J Niessen,et al.  Tissue segmentation of head and neck CT images for treatment planning: a multiatlas approach combined with intensity modeling. , 2013, Medical physics.

[219]  Ben Glocker,et al.  Atlas Encoding by Randomized Forests for Efficient Label Propagation , 2013, MICCAI.

[220]  Daniel Rueckert,et al.  Automated Abdominal Multi-Organ Segmentation With Subject-Specific Atlas Generation , 2013, IEEE Transactions on Medical Imaging.

[221]  Shu Liao,et al.  Sparse Patch-Based Label Propagation for Accurate Prostate Localization in CT Images , 2013, IEEE Transactions on Medical Imaging.

[222]  Marc Niethammer,et al.  Automatic atlas-based three-label cartilage segmentation from MR knee images , 2014, 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis.

[223]  Javier Sanguino,et al.  A New Label Fusion Method Using Graph Cuts: Application to Hippocampus Segmentation , 2014 .

[224]  Piotr J. Slomka,et al.  Automated algorithm for atlas-based segmentation of the heart and pericardium from non-contrast CT , 2010, Medical Imaging.

[225]  Juha Koikkalainen,et al.  Atlas-based registration parameters in segmenting sub-cortical regions from brain MRI-images , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[226]  Bjoern H. Menze,et al.  Medical Computer Vision. Large Data in Medical Imaging: Third International MICCAI Workshop, MCV 2013, Nagoya, Japan, September 26, 2013, Revised Selected Papers , 2014, MCV.

[227]  T van Walsum,et al.  Evaluation of a multi-atlas based method for segmentation of cardiac CTA data: a large-scale, multicenter, and multivendor study. , 2010, Medical physics.

[228]  Bram van Ginneken,et al.  Automatic segmentation of the liver in computed tomography scans with voxel classification and atlas matching , 2007 .

[229]  Mert R. Sabuncu,et al.  A Generative Model for Probabilistic Label Fusion of Multimodal Data , 2012, MBIA.

[230]  Satrajit S. Ghosh,et al.  Mindboggle: Automated brain labeling with multiple atlases , 2005, BMC Medical Imaging.

[231]  Mert R. Sabuncu,et al.  A Generative Model for Image Segmentation Based on Label Fusion , 2010, IEEE Transactions on Medical Imaging.

[232]  Einar Heiberg,et al.  Design and validation of Segment - freely available software for cardiovascular image analysis , 2010, BMC Medical Imaging.

[233]  Bilwaj Gaonkar,et al.  Multi-atlas skull-stripping. , 2013, Academic radiology.

[234]  Daniel Rueckert,et al.  Automatic anatomical brain MRI segmentation combining label propagation and decision fusion , 2006, NeuroImage.

[235]  Benoit M. Macq,et al.  Effect of inter-subject variation on the accuracy of atlas-based segmentation applied to human brain structures , 2010, Medical Imaging.

[236]  Nikos Paragios,et al.  Deformable Medical Image Registration: A Survey , 2013, IEEE Transactions on Medical Imaging.

[237]  Mert R. Sabuncu,et al.  A unified framework for cross-modality multi-atlas segmentation of brain MRI , 2013, Medical Image Anal..

[238]  Sébastien Ourselin,et al.  Fast free-form deformation using graphics processing units , 2010, Comput. Methods Programs Biomed..

[239]  Xavier Bresson,et al.  Evaluation and Comparison of Current Fetal Ultrasound Image Segmentation Methods for Biometric Measurements: A Grand Challenge , 2014, IEEE Transactions on Medical Imaging.

[240]  William M. Wells,et al.  Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation , 2004, IEEE Transactions on Medical Imaging.

[241]  Ben Glocker,et al.  Encoding atlases by randomized classification forests for efficient multi-atlas label propagation , 2014, Medical Image Anal..

[242]  Bennett A. Landman,et al.  Hierarchical performance estimation in the statistical label fusion framework , 2014, Medical Image Anal..

[243]  J C Mazziotta,et al.  Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward‐transform method , 1997, Human brain mapping.

[244]  Ben Glocker,et al.  Classifier-Based Multi-atlas Label Propagation with Test-Specific Atlas Weighting for Correspondence-Free Scenarios , 2014, MCV.

[245]  Seth A. Smith,et al.  Groupwise multi-atlas segmentation of the spinal cord's internal structure , 2014, Medical Image Anal..

[246]  Meritxell Bach Cuadra,et al.  Multi-Atlas based Segmentation of Head and Neck CT Images using Active Contour Framework , 2010 .

[247]  Mert R. Sabuncu,et al.  A generative model for multi-atlas segmentation across modalities , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[248]  Jean-Philippe Thiran,et al.  Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information , 2014, MLMI.

[249]  O. Commowick,et al.  Incorporating Priors on Expert Performance Parameters for Segmentation Validation and Label Fusion: A Maximum a Posteriori STAPLE , 2010, MICCAI.

[250]  R. Mayeux,et al.  Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease , 2013, Nature Neuroscience.

[251]  Paul M. Thompson,et al.  Automatic Population HARDI White Matter Tract Clustering by Label Fusion of Multiple Tract Atlases , 2012, MBIA.

[252]  Michaël Sdika,et al.  Combining atlas based segmentation and intensity classification with nearest neighbor transform and accuracy weighted vote , 2010, Medical Image Anal..

[253]  Gerhard Goos,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 , 2014, Lecture Notes in Computer Science.

[254]  Mert R. Sabuncu,et al.  Improved inference in Bayesian segmentation using Monte Carlo sampling: Application to hippocampal subfield volumetry , 2013, Medical Image Anal..

[255]  Nassir Navab,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013 , 2013, Lecture Notes in Computer Science.

[256]  Pierrick Coupé,et al.  Multi-atlas labeling with population-specific template and non-local patch-based label fusion , 2012 .

[257]  Torsten Rohlfing,et al.  Extraction and Application of Expert Priors to Combine Multiple Segmentations of Human Brain Tissue , 2003, MICCAI.

[258]  Daniel Rueckert,et al.  Classifier Selection Strategies for Label Fusion Using Large Atlas Databases , 2007, MICCAI.

[259]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[260]  Vladimir Fonov,et al.  Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)—Implementation and application of the patch‐based label‐fusion technique with a template library to segment the human cerebellum , 2014, Human brain mapping.

[261]  Nicolas Costes,et al.  A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction , 2013, NeuroImage.

[262]  W. Eric L. Grimson,et al.  A Bayesian model for joint segmentation and registration , 2006, NeuroImage.

[263]  Jyrki Lötjönen,et al.  Robust whole-brain segmentation: Application to traumatic brain injury , 2015, Medical Image Anal..

[264]  Amy C Janes,et al.  Striatal Morphology is Associated with Tobacco Cigarette Craving , 2015, Neuropsychopharmacology.

[265]  Martin Lundmark,et al.  Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients , 2013, Radiation oncology.

[266]  Paolo Zaffino,et al.  Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours. , 2014, Medical physics.

[267]  Aaron Carass,et al.  Automated reliable labeling of the cortical surface , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[268]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[269]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[270]  Daniel Rueckert,et al.  An evaluation of four automatic methods of segmenting the subcortical structures in the brain , 2009, NeuroImage.

[271]  Martyn P. Nash,et al.  Breast lesion co-localisation between X-ray and MR images using finite element modelling , 2013, Medical Image Anal..

[272]  Paul A. Yushkevich,et al.  Multi-Atlas Segmentation with Joint Label Fusion , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[273]  Paul A. Yushkevich,et al.  Regression-based label fusion for multi-atlas segmentation , 2011, CVPR 2011.

[274]  Arthur W. Toga,et al.  Conformal Mapping via Metric Optimization with Application for Cortical Label Fusion , 2013, IPMI.