Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle.

A detailed asymptotic study of the effect of small Gaussian white noise on a relaxation oscillator undergoing a supercritical Hopf bifurcation is presented. The analysis reveals an intricate stochastic bifurcation leading to several kinds of noise-driven mixed-mode oscillations at different levels of amplitude of the noise. In the limit of strong time-scale separation, five different scaling regimes for the noise amplitude are identified. As the noise amplitude is decreased, the dynamics of the system goes from the limit cycle due to self-induced stochastic resonance to the coherence resonance limit cycle, then to bursting relaxation oscillations, followed by rare clusters of several relaxation cycles (spikes), and finally to small-amplitude oscillations (or stable fixed point) with sporadic single spikes. These scenarios are corroborated by numerical simulations.

[1]  W. E,et al.  Noise can play an organizing role for the recurrent dynamics in excitable media , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[2]  E. Vanden-Eijnden,et al.  A Nontrivial Scaling Limit for Multiscale Markov Chains , 2007 .

[3]  Horacio G. Rotstein,et al.  The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells , 2006, Journal of Computational Neuroscience.

[4]  Eric Vanden-Eijnden,et al.  Non-meanfield deterministic limits in chemical reaction kinetics. , 2005, The Journal of chemical physics.

[5]  E. Vanden-Eijnden,et al.  Wavetrain response of an excitable medium to local stochastic forcing , 2006 .

[6]  N. Berglund,et al.  Noise-Induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach , 2005 .

[7]  E Weinan,et al.  Self-induced stochastic resonance in excitable systems , 2005 .

[8]  Eric Vanden-Eijnden,et al.  Two distinct mechanisms of coherence in randomly perturbed dynamical systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[10]  K. Pakdaman,et al.  Random dynamics of the Morris-Lecar neural model. , 2004, Chaos.

[11]  J. García-Ojalvo,et al.  Effects of noise in excitable systems , 2004 .

[12]  Michael E Hasselmo,et al.  Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons , 2004, Hippocampus.

[13]  A. Goldbeter Computational approaches to cellular rhythms , 2002, Nature.

[14]  S. Leibler,et al.  Mechanisms of noise-resistance in genetic oscillators , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[16]  V I Nekorkin,et al.  Spiking behavior in a noise-driven system combining oscillatory and excitatory properties. , 2001, Physical review letters.

[17]  Mark Freidlin,et al.  On Stable Oscillations and Equilibriums Induced by Small Noise , 2001 .

[18]  K. Tamura,et al.  Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A , 2001 .

[19]  Ekaterina Ponizovskaya Devine,et al.  Multivalued stochastic resonance in a model of an excitable neuron , 2000 .

[20]  Stochastic resonance in a nonequilibrium electron-hole plasma , 1999 .

[21]  B. Braaksma,et al.  Singular Hopf Bifurcation in Systems with Fast and Slow Variables , 1998 .

[22]  A. Alonso,et al.  Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. , 1998, Journal of neurophysiology.

[23]  Ekaterina Ponizovskaya Devine,et al.  The nature of bursting noises, stochastic resonance and deterministic chaos in excitable neurons , 1998 .

[24]  Ekaterina Ponizovskaya,et al.  Coexistence of low-amplitude quasiharmonic oscillations and giant-amplitude spike oscillations in systems with one degree of freedom , 1998 .

[25]  Ekaterina Ponizovskaya,et al.  Giant noise and chaotic transitions between the states that are close to small-amplitude quasi-harmonic and relaxation self-oscillations , 1998 .

[26]  James P. Keener,et al.  Mathematical physiology , 1998 .

[27]  J. Kurths,et al.  Coherence Resonance in a Noise-Driven Excitable System , 1997 .

[28]  A. Longtin AUTONOMOUS STOCHASTIC RESONANCE IN BURSTING NEURONS , 1997 .

[29]  A. Goldbeter,et al.  Biochemical Oscillations And Cellular Rhythms: Contents , 1996 .

[30]  Michael Mascagni,et al.  A Fast, High Quality, and Reproducible Parallel Lagged-Fibonacci Pseudorandom Number Generator , 1995 .

[31]  A. Y. Kolesov,et al.  Asymptotic Methods in Singularly Perturbed Systems , 1994 .

[32]  J. Rinzel,et al.  The slow passage through a Hopf bifurcation: delay, memory effects, and resonance , 1989 .

[33]  J. Grasman Asymptotic Methods for Relaxation Oscillations and Applications , 1987 .

[34]  S. Baer,et al.  Sungular hopf bifurcation to relaxation oscillations , 1986 .

[35]  K. Vahala Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.

[36]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[37]  R. J. Field,et al.  Oscillations and Traveling Waves in Chemical Systems , 1985 .

[38]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[39]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[40]  Ferdinand Verhulst Asymptotic Analysis II , 1983 .

[41]  Wiktor Eckhaus,et al.  Relaxation oscillations including a standard chase on French ducks , 1983 .

[42]  É. Benoît,et al.  Chasse au canard (première partie) , 1981 .

[43]  J. Ross,et al.  Threshold excitations, relaxation oscillations, and effect of noise in an enzyme reaction. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Andronov CHAPTER III – NON-CONSERVATIVE SYSTEMS , 1966 .

[45]  S. E. Khaikin,et al.  Theory of Oscillators , 1966 .

[46]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .