Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides.

[1]  C. Hunter,et al.  Quantitative proteomic analysis of intracytoplasmic membrane development in Rhodobacter sphaeroides , 2012, Molecular microbiology.

[2]  Peter G. Adams,et al.  Monomeric RC-LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides. , 2011, Biochimica et biophysica acta.

[3]  Cvetelin Vasilev,et al.  Carotenoids are essential for normal levels of dimerisation of the RC-LH1-PufX core complex of Rhodobacter sphaeroides: characterisation of R-26 as a crtB (phytoene synthase) mutant. , 2011, Biochimica et biophysica acta.

[4]  R. Niederman,et al.  The accumulation of the light-harvesting 2 complex during remodeling of the Rhodobacter sphaeroides intracytoplasmic membrane results in a slowing of the electron transfer turnover rate of photochemical reaction centers. , 2011, Biochemistry.

[5]  Klaus Schulten,et al.  Photosynthetic vesicle architecture and constraints on efficient energy harvesting. , 2010, Biophysical journal.

[6]  D. Stokes,et al.  Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles , 2010, Molecular microbiology.

[7]  R. Niederman,et al.  Proteomic analysis of the developing intracytoplasmic membrane in Rhodobacter sphaeroides during adaptation to low light intensity. , 2010, Advances in experimental medicine and biology.

[8]  Danielle E. Chandler,et al.  Membrane curvature induced by aggregates of LH2s and monomeric LH1s. , 2009, Biophysical journal.

[9]  Klaus Schulten,et al.  Protein-induced membrane curvature investigated through molecular dynamics flexible fitting. , 2009, Biophysical journal.

[10]  S. Scheuring,et al.  Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery , 2009, Photosynthesis Research.

[11]  J. Sturgis,et al.  Atomic force microscopy studies of native photosynthetic membranes. , 2009, Biochemistry.

[12]  G. Klug,et al.  Regulation of Genes by Light , 2009 .

[13]  J. Olsen,et al.  The Organization of LH2 Complexes in Membranes from Rhodobacter sphaeroides* , 2008, Journal of Biological Chemistry.

[14]  P. Bullough,et al.  Three-dimensional Reconstruction of a Membrane-bending Complex , 2008, Journal of Biological Chemistry.

[15]  Josep C. Pàmies,et al.  Protein shape and crowding drive domain formation and curvature in biological membranes. , 2008, Biophysical journal.

[16]  Klaus Schulten,et al.  Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle , 2007, Proceedings of the National Academy of Sciences.

[17]  C. Hunter,et al.  The assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[18]  Simon Scheuring,et al.  Chromatic Adaptation of Photosynthetic Membranes , 2005, Science.

[19]  Z. Kolber,et al.  Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. , 2005, Biochimica et biophysica acta.

[20]  Simon Scheuring,et al.  Structure of the Dimeric PufX-containing Core Complex of Rhodobacter blasticus by in Situ Atomic Force Microscopy* , 2005, Journal of Biological Chemistry.

[21]  Simon Scheuring,et al.  Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum , 2004, The EMBO journal.

[22]  Cees Otto,et al.  The native architecture of a photosynthetic membrane , 2004, Nature.

[23]  A. Engel,et al.  Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX , 2004, The EMBO journal.

[24]  T. Jovin,et al.  Probing chromatin with the scanning force microscope , 1994, Chromosoma.

[25]  J. Sturgis,et al.  The effect of different levels of the B800-850 light-harvesting complex on intracytoplasmic membrane development in Rhodobacter sphaeroides , 1996, Archives of Microbiology.

[26]  G. Turner,et al.  Transfer of Genes Coding for Apoproteins of Reaction Centre and Light-harvesting LH1 Complexes to Rhodobacter sphaeroides , 1988 .

[27]  P. Kiley,et al.  Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides light-harvesting B800-850-alpha and B800-850-beta genes , 1987, Journal of bacteriology.

[28]  H. Frank,et al.  How carotenoids function in photosynthetic bacteria. , 1987, Biochimica et biophysica acta.

[29]  T. Donohue,et al.  Origin of the mRNA stoichiometry of the puf operon in Rhodobacter sphaeroides. , 1986, The Journal of biological chemistry.

[30]  R. Niederman,et al.  Role of apparent membrane growth initiation sites during photosynthetic membrane development in synchronously dividing Rhodopseudomonas sphaeroides , 1986, Journal of bacteriology.

[31]  H. Kramer,et al.  Linear Dichroism and Fluorescence Emission of Antenna Complexes during Photosynthetic Unit Assembly in Rhodopseudomonas Sphaeroides , 1985 .

[32]  R. Niederman,et al.  Photosynthetic membrane development in Rhodopseudomonas sphaeroides. Spectral and kinetic characterization of redox components of light-driven electron flow in apparent photosynthetic membrane growth initiation sites. , 1985, The Journal of biological chemistry.

[33]  R. Niederman,et al.  Intracellular localization of photosynthetic membrane growth initiation sites in Rhodopseudomonas sphaeroides , 1984, Journal of bacteriology.

[34]  T. Parkin,et al.  Photosynthetic bacterial production in lakes: The effects of light intensity1 , 1980 .

[35]  C. Hunter,et al.  Membranes of Rhodopseudomonas sphaeroides. VII. Photochemical properties of a fraction enriched in newly synthesized bacteriochlorophyll a-protein complexes. , 1979, Biochimica et biophysica acta.

[36]  R. Niederman,et al.  Membranes of Rhodopseudomonas sphaeroides. VI. Isolation of a fraction enriched in newly synthesized bacteriochlorophyll alpha-protein complexes. , 1979, Biochimica et biophysica acta.

[37]  C. Hunter,et al.  FLUORESCENCE YIELD PROPERTIES OF A FRACTION ENRICHED IN NEWLY SYNTHESIZED BACTERIOCHLOROPHYLL U‐PROTEIN COMPLEXES FROM RHODOPSEUDOMONAS SPHAEROIDES , 1979, Photochemistry and photobiology.

[38]  W. Pryor Free Radicals in Biology , 1976 .

[39]  C. Foote CHAPTER 3 – Photosensitized Oxidation and Singlet Oxygen: Consequences in Biological Systems , 1976 .

[40]  W. R. Sistrom,et al.  CONTROL OF SYNTHESIS OF REACTION CENTER BACTERIOCHLOROPHYLL IN PHOTOSYNTHETIC BACTERIA , 1972, Photochemistry and photobiology.

[41]  R. Clayton SPECTROSCOPIC ANALYSIS OF BACTERIOCHLOROPHYLLS IN VITRO AND IN VIVO * , 1966 .

[42]  R. Wolfe,et al.  THE STRUCTURE OF PHOTOSYNTHETIC BACTERIA , 1958, Journal of bacteriology.