Hiking on the potential energy surface of a functional tyrosinase model--implications of singlet, broken-symmetry and triplet description.

The singlet, open-shell singlet and triplet potential energy surfaces (PES) for the peroxo state of a catalytic functional tyrosinase model have been investigated by density functional theory calculations. The broken-symmetry solution exhibits considerable stabilisation over the whole PES but the importance of the triplet state is unravelled as well.

[1]  F. Tuczek,et al.  Catalytic Conversion of Monophenols to Ortho‐Quinones in a Tyrosinase‐Like Fashion: Towards More Biomimetic and More Efficient Model Systems , 2013 .

[2]  F. Tuczek,et al.  Das erste katalytische Tyrosinasemodell basierend auf einem einkernigen Kupfer(I)‐Komplex: Kinetik und Mechanismus , 2010 .

[3]  Clark R. Landis,et al.  Valency and Bonding: Contents , 2005 .

[4]  Sonja Herres-Pawlis,et al.  Phenolate hydroxylation in a bis(mu-oxo)dicopper(III) complex: lessons from the guanidine/amine series. , 2009, Journal of the American Chemical Society.

[5]  Heinz Decker,et al.  Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. , 2011, Chemical Society reviews.

[6]  K. Pierloot,et al.  Theoretical Study of the Interconversion of O2-Binding Dicopper Complexes , 1997 .

[7]  E. Solomon,et al.  Multicopper Oxidases and Oxygenases. , 1996, Chemical reviews.

[8]  K. Yoshizawa,et al.  Quantum chemical approach to the mechanism for the biological conversion of tyrosine to dopaquinone. , 2008, Journal of the American Chemical Society.

[9]  S. Fukuzumi,et al.  Monooxygenase activity of type 3 copper proteins. , 2007, Accounts of chemical research.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  T. D. Stack,et al.  Biomimetic modeling of copper oxidase reactivity. , 2000, Current opinion in chemical biology.

[12]  Clark R. Landis,et al.  Valency and Bonding: Author index , 2005 .

[13]  L. Casella,et al.  A tyrosinase model system. Phenol ortho-hydroxylation by a binuclear three-coordinate copper(I) complex and dioxygen , 1991 .

[14]  W. Tolman,et al.  Biologically inspired oxidation catalysis , 2008, Nature.

[15]  Yasuyuki Nakanishi,et al.  Theoretical studies on chemical bonding between Cu(II) and oxygen molecule in type 3 copper proteins , 2009 .

[16]  Hans-Joachim Werner,et al.  Ab initio study of the O2 binding in dicopper complexes , 2005 .

[17]  Christopher J. Cramer,et al.  Validation of density functional modeling protocols on experimental bis(μ-oxo)/μ-η2:η2-peroxo dicopper equilibria , 2007, JBIC Journal of Biological Inorganic Chemistry.

[18]  T. D. Stack,et al.  Complexity with simplicity: a steric continuum of chelating diamines with copper(I) and dioxygen , 2003 .

[19]  Luigi Cavallo,et al.  Probing the mechanism of O2 activation by a copper(I) biomimetic complex of a C-H hydroxylating copper monooxygenase. , 2009, Inorganic chemistry.

[20]  M. Reiher,et al.  Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters. , 2008, The Journal of chemical physics.

[21]  K. Hodgson,et al.  Geometric and electronic structure of [{Cu(MeAN)}2(μ-η2:η2(O2(2-)))]2+ with an unusually long O-O bond: O-O bond weakening vs activation for reductive cleavage. , 2012, Journal of the American Chemical Society.

[22]  Xavi Ribas,et al.  Tyrosinase-like reactivity in a Cu(III)2(mu-O)2 species. , 2008, Chemistry.

[23]  T. D. Stack,et al.  Reaction coordinate of a functional model of tyrosinase: spectroscopic and computational characterization. , 2009, Journal of the American Chemical Society.

[24]  S. Schindler Reactivity of Copper(I) Complexes Towards Dioxygen , 2000 .

[25]  Gernot Frenking,et al.  Investigation of Donor-Acceptor Interactions: A Charge Decomposition Analysis Using Fragment Molecular Orbitals , 1995 .

[26]  Laura Gagliardi,et al.  The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. , 2008, The Journal of chemical physics.

[27]  B. Waegell,et al.  Binuclear copper complex model of tyrosinase , 1990 .

[28]  T. D. Stack,et al.  Structure and spectroscopy of copper-dioxygen complexes. , 2004, Chemical reviews.

[29]  J. G. Yu,et al.  Theoretical study of the oxidation of phenolates by the [Cu2O2(N,N'-di-tert-butylethylenediamine)2]2+ complex. , 2013, Chemistry.

[30]  Clark R. Landis,et al.  Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective , 2005 .

[31]  K. Karlin,et al.  Ligand Influences in Copper-Dioxygen Complex-Formation and Substrate Oxidations , 2006 .

[32]  Alexander Hoffmann,et al.  Katalytische Phenolhydroxylierung mit Sauerstoff: Substratvielfalt jenseits der Proteinmatrix von Tyrosinase , 2013 .

[33]  Luigi Cavallo,et al.  Dancing multiplicity states supported by a carboxylated group in dicopper structures bonded to O2 , 2013, Theoretical Chemistry Accounts.

[34]  Michael Vance,et al.  Tyrosinase Reactivity in a Model Complex: An Alternative Hydroxylation Mechanism , 2005, Science.

[35]  W. Tolman MAKING AND BREAKING THE DIOXYGEN 0-0 BOND : NEW INSIGHTS FROM STUDIES OF SYNTHETIC COPPER COMPLEXES , 1997 .

[36]  P. Holland,et al.  Dioxygen activation by copper sites: relative stability and reactivity of (μ-η2:η2-peroxo)- and bis(μ-oxo)dicopper cores , 1999 .

[37]  E. Monzani,et al.  Hydroxylation of phenolic compounds by a peroxodicopper(II) complex: further insight into the mechanism of tyrosinase. , 2005, Journal of the American Chemical Society.

[38]  Y. Matoba,et al.  Crystallographic Evidence That the Dinuclear Copper Center of Tyrosinase Is Flexible during Catalysis* , 2006, Journal of Biological Chemistry.

[39]  Per E. M. Siegbahn,et al.  The performance of hybrid DFT for mechanisms involving transition metal complexes in enzymes , 2006, JBIC Journal of Biological Inorganic Chemistry.

[40]  Jason A. Halfen,et al.  Reversible Cleavage and Formation of the Dioxygen O-O Bond Within a Dicopper Complex , 1996, Science.

[41]  Cristina Puzzarini,et al.  Theoretical models on the Cu2O2 torture track: mechanistic implications for oxytyrosinase and small-molecule analogues. , 2006, The journal of physical chemistry. A.

[42]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[43]  Christopher J. Cramer,et al.  Quantum chemical studies of molecules incorporating a Cu2O22+ core , 2009 .