Finite volume schemes for dispersive wave propagation and runup

Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions, dispersive shock wave formation and the runup of breaking and non-breaking long waves.

[1]  D. Korteweg,et al.  On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 2011 .

[2]  Athanassios S. Fokas,et al.  Boundary Value Problems for Boussinesq Type Systems , 2005 .

[3]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[4]  Costas E. Synolakis,et al.  The runup of solitary waves , 1987, Journal of Fluid Mechanics.

[5]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[6]  Pavel Tkalich,et al.  Tsunami propagation modelling – a sensitivity study , 2007 .

[7]  Marco Petti,et al.  Hybrid finite volume – finite difference scheme for 2DH improved Boussinesq equations , 2009 .

[8]  D. E. Mitsotakis,et al.  Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves , 2009, Math. Comput. Simul..

[9]  Nikolaos A. Kampanis,et al.  A robust high‐resolution finite volume scheme for the simulation of long waves over complex domains , 2008 .

[10]  Min Chen Solitary-wave and multi-pulsed traveling-wave solutions of boussinesq systems , 2000 .

[11]  Physics Letters , 1962, Nature.

[12]  Bernard Molin,et al.  A coupling method between extended Boussinesq equations and the integral equation method with application to a two-dimensional numerical wave-tank , 2009 .

[13]  Spencer J. Sherwin,et al.  Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations , 2006, J. Comput. Phys..

[14]  Hai Yen Nguyen Modèles pour les ondes interfaciales et leur intégration numérique , 2008 .

[15]  Jerónimo Puertas,et al.  Experimental and numerical analysis of solitary waves generated by bed and boundary movements , 2004 .

[16]  Denys Dutykh,et al.  Water waves generated by a moving bottom , 2007 .

[17]  Vasily Titov,et al.  Implementation and testing of the Method of Splitting Tsunami (MOST) model , 1997 .

[18]  D. Peregrine Long waves on a beach , 1967, Journal of Fluid Mechanics.

[19]  R. Frosch Ocean engineering , 1972 .

[20]  J. Bona,et al.  Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory , 2004 .

[21]  Jean-Michel Ghidaglia,et al.  On the numerical solution to two fluid models via a cell centered finite volume method , 2001 .

[22]  Fernando J. Seabra-Santos,et al.  A high‐order Petrov–Galerkin finite element method for the classical Boussinesq wave model , 2009 .

[23]  Philippe Guyenne,et al.  Solitary water wave interactions , 2006 .

[24]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[25]  Min Chen,et al.  Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory , 2002, J. Nonlinear Sci..

[26]  F. Serre,et al.  CONTRIBUTION À L'ÉTUDE DES ÉCOULEMENTS PERMANENTS ET VARIABLES DANS LES CANAUX , 1953 .

[27]  J. A. Zelt The run-up of nonbreaking and breaking solitary waves , 1991 .

[28]  H. Schäffer,et al.  Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Costas E. Synolakis,et al.  Long wave runup on piecewise linear topographies , 1998, Journal of Fluid Mechanics.

[30]  S. S. Lappo,et al.  Satellite recording of the Indian Ocean tsunami on December 26, 2004 , 2005 .

[31]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  O. Nwogu Alternative form of Boussinesq equations for nearshore wave propagation , 1993 .

[34]  Jerry L. Bona,et al.  A Boussinesq system for two-way propagation of nonlinear dispersive waves , 1998 .

[35]  D. C. Antonopoulos,et al.  Numerical solution of Boussinesq systems of the Bona--Smith family , 2010 .

[36]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[37]  V. A. Dougalis,et al.  SOLITARY WAVES OF THE BONA - SMITH SYSTEM , 2004 .

[38]  D. H. Peregrine,et al.  Surf and run-up on a beach: a uniform bore , 1979, Journal of Fluid Mechanics.

[39]  Chi-Wang Shu,et al.  A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..

[40]  Harry B. Bingham,et al.  A numerical study of nonlinear wave run-up on a vertical plate , 2006 .

[41]  M A U R ´ I C I,et al.  A Fully Nonlinear Boussinesq Model for Surface Waves. Part 2. Extension to O(kh) 4 , 2000 .

[42]  T. Maxworthy,et al.  Experiments on collisions between solitary waves , 1976, Journal of Fluid Mechanics.

[43]  K. Anastasiou,et al.  SOLUTION OF THE 2D SHALLOW WATER EQUATIONS USING THE FINITE VOLUME METHOD ON UNSTRUCTURED TRIANGULAR MESHES , 1997 .

[44]  J. Kirby,et al.  BOUSSINESQ MODELING OF WAVE TRANSFORMATION, BREAKING, AND RUNUP. II: 2D , 2000 .

[45]  R. Lathe Phd by thesis , 1988, Nature.

[46]  J. Fenton,et al.  Coastal and Ocean Engineering , 2009 .

[47]  Denys Dutykh,et al.  Comparison between three-dimensional linear and nonlinear tsunami generation models , 2007 .

[48]  V. A. Dougalis,et al.  Numerical solution of KdV-KdV systems of Boussinesq equations: I. The numerical scheme and generalized solitary waves , 2007, Math. Comput. Simul..

[49]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[50]  Min Chen Exact Traveling-Wave Solutions to Bidirectional Wave Equations , 1998 .

[51]  Denys Dutykh,et al.  The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation , 2010, 1002.4553.

[52]  G. Wei,et al.  A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves , 1995, Journal of Fluid Mechanics.

[53]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[54]  J. Davenport Editor , 1960 .

[55]  H. Hakimzadeh,et al.  Part 1 , 2011 .

[56]  T. Brooke Benjamin,et al.  Hamiltonian structure, symmetries and conservation laws for water waves , 1982, Journal of Fluid Mechanics.

[57]  A. I. Delis,et al.  Relaxation schemes for the shallow water equations , 2003 .

[58]  K. S. Erduran,et al.  Hybrid finite‐volume finite‐difference scheme for the solution of Boussinesq equations , 2005 .

[59]  George W. Housner,et al.  Numerical Model for Tsunami Run-Up , 1970 .

[60]  R. Grimshaw Journal of Fluid Mechanics , 1956, Nature.

[61]  M. Schonbek,et al.  Existence of solutions for the boussinesq system of equations , 1981 .

[62]  Beatrice Pelloni,et al.  Numerical modelling of two-way propagation of non-linear dispersive waves , 2001 .

[63]  Ying Li Non-breaking and breaking solitary wave run-up , 2000, Journal of Fluid Mechanics.

[64]  Frédéric Dias,et al.  On the fully-nonlinear shallow-water generalized Serre equations , 2010 .

[65]  Jean-Michel Ghidaglia,et al.  Une méthode volumes finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation , 1996 .

[66]  C. Synolakis,et al.  The run-up of N-waves on sloping beaches , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[67]  S. K. Godunov,et al.  Reminiscences about Difference Schemes , 1999 .

[68]  D. C. Antonopoulos,et al.  INITIAL-BOUNDARY-VALUE PROBLEMS FOR THE BONA-SMITH FAMILY OF BOUSSINESQ SYSTEMS , 2009 .

[69]  Philippe Bonneton,et al.  A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II : boundary conditions and validation , 2007 .

[70]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[71]  Jerry L. Bona,et al.  A model for the two-way propagation of water waves in a channel , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[72]  Vasily Titov,et al.  Numerical Modeling of Tidal Wave Runup , 1998 .

[73]  Qin Chen,et al.  Funwave 1.0: Fully Nonlinear Boussinesq Wave Model - Documentation and User's Manual , 1998 .

[74]  M. Nicholas,et al.  Coastal engineering. , 1969, Science.

[75]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[76]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[77]  Philippe Bonneton,et al.  Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation , 2009 .

[78]  A. Peratt,et al.  Resonances in light scattered from a plasma in a magnetic field , 1975 .

[79]  V. A. Dougalis,et al.  Numerical solution of the 'classical' Boussinesq system , 2012, Math. Comput. Simul..

[80]  Doron Levy,et al.  Local discontinuous Galerkin methods for nonlinear dispersive equations , 2004 .

[81]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[82]  Dimitrios Mitsotakis,et al.  Theory and Numerical Analysis of Boussinesq Systems: A Review , 2008 .

[83]  Anjan Kundu Tsunami and nonlinear waves , 2007 .

[84]  Philippe Bonneton,et al.  A fourth‐order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq‐type equations. Part I: model development and analysis , 2006 .

[85]  Clive G. Mingham,et al.  A temporally second-order accurate Godunov-type scheme for solving the extended Boussinesq equations , 2009 .

[86]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[87]  C. Amick,et al.  Regularity and uniqueness of solutions to the Boussinesq system of equations , 1984 .

[88]  Spencer J. Sherwin,et al.  An unstructured spectral/hp element model for enhanced Boussinesq-type equations , 2006 .

[89]  Maurizio Brocchini,et al.  On the shoreline boundary conditions for Boussinesq‐type models , 2001 .

[90]  A. Durán,et al.  A Numerical Study of the Stability of Solitary Waves of the Bona–Smith Family of Boussinesq Systems , 2007, J. Nonlinear Sci..

[91]  M. J. Simon,et al.  Wave-energy extraction by a submerged cylindrical resonant duct , 1981 .

[92]  乔玉平 海角港(Dalrymple湾)简介 , 2004 .

[93]  C. E. Synolakis,et al.  Validation and Verification of Tsunami Numerical Models , 2008 .