Finite volume schemes for dispersive wave propagation and runup
暂无分享,去创建一个
[1] D. Korteweg,et al. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 2011 .
[2] Athanassios S. Fokas,et al. Boundary Value Problems for Boussinesq Type Systems , 2005 .
[3] Steven J. Ruuth,et al. A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..
[4] Costas E. Synolakis,et al. The runup of solitary waves , 1987, Journal of Fluid Mechanics.
[5] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[6] Pavel Tkalich,et al. Tsunami propagation modelling – a sensitivity study , 2007 .
[7] Marco Petti,et al. Hybrid finite volume – finite difference scheme for 2DH improved Boussinesq equations , 2009 .
[8] D. E. Mitsotakis,et al. Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves , 2009, Math. Comput. Simul..
[9] Nikolaos A. Kampanis,et al. A robust high‐resolution finite volume scheme for the simulation of long waves over complex domains , 2008 .
[10] Min Chen. Solitary-wave and multi-pulsed traveling-wave solutions of boussinesq systems , 2000 .
[11] Physics Letters , 1962, Nature.
[12] Bernard Molin,et al. A coupling method between extended Boussinesq equations and the integral equation method with application to a two-dimensional numerical wave-tank , 2009 .
[13] Spencer J. Sherwin,et al. Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations , 2006, J. Comput. Phys..
[14] Hai Yen Nguyen. Modèles pour les ondes interfaciales et leur intégration numérique , 2008 .
[15] Jerónimo Puertas,et al. Experimental and numerical analysis of solitary waves generated by bed and boundary movements , 2004 .
[16] Denys Dutykh,et al. Water waves generated by a moving bottom , 2007 .
[17] Vasily Titov,et al. Implementation and testing of the Method of Splitting Tsunami (MOST) model , 1997 .
[18] D. Peregrine. Long waves on a beach , 1967, Journal of Fluid Mechanics.
[19] R. Frosch. Ocean engineering , 1972 .
[20] J. Bona,et al. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory , 2004 .
[21] Jean-Michel Ghidaglia,et al. On the numerical solution to two fluid models via a cell centered finite volume method , 2001 .
[22] Fernando J. Seabra-Santos,et al. A high‐order Petrov–Galerkin finite element method for the classical Boussinesq wave model , 2009 .
[23] Philippe Guyenne,et al. Solitary water wave interactions , 2006 .
[24] E. Tadmor,et al. Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .
[25] Min Chen,et al. Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory , 2002, J. Nonlinear Sci..
[26] F. Serre,et al. CONTRIBUTION À L'ÉTUDE DES ÉCOULEMENTS PERMANENTS ET VARIABLES DANS LES CANAUX , 1953 .
[27] J. A. Zelt. The run-up of nonbreaking and breaking solitary waves , 1991 .
[28] H. Schäffer,et al. Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[29] Costas E. Synolakis,et al. Long wave runup on piecewise linear topographies , 1998, Journal of Fluid Mechanics.
[30] S. S. Lappo,et al. Satellite recording of the Indian Ocean tsunami on December 26, 2004 , 2005 .
[31] P. Sweby. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .
[32] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[33] O. Nwogu. Alternative form of Boussinesq equations for nearshore wave propagation , 1993 .
[34] Jerry L. Bona,et al. A Boussinesq system for two-way propagation of nonlinear dispersive waves , 1998 .
[35] D. C. Antonopoulos,et al. Numerical solution of Boussinesq systems of the Bona--Smith family , 2010 .
[36] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[37] V. A. Dougalis,et al. SOLITARY WAVES OF THE BONA - SMITH SYSTEM , 2004 .
[38] D. H. Peregrine,et al. Surf and run-up on a beach: a uniform bore , 1979, Journal of Fluid Mechanics.
[39] Chi-Wang Shu,et al. A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..
[40] Harry B. Bingham,et al. A numerical study of nonlinear wave run-up on a vertical plate , 2006 .
[41] M A U R ´ I C I,et al. A Fully Nonlinear Boussinesq Model for Surface Waves. Part 2. Extension to O(kh) 4 , 2000 .
[42] T. Maxworthy,et al. Experiments on collisions between solitary waves , 1976, Journal of Fluid Mechanics.
[43] K. Anastasiou,et al. SOLUTION OF THE 2D SHALLOW WATER EQUATIONS USING THE FINITE VOLUME METHOD ON UNSTRUCTURED TRIANGULAR MESHES , 1997 .
[44] J. Kirby,et al. BOUSSINESQ MODELING OF WAVE TRANSFORMATION, BREAKING, AND RUNUP. II: 2D , 2000 .
[45] R. Lathe. Phd by thesis , 1988, Nature.
[46] J. Fenton,et al. Coastal and Ocean Engineering , 2009 .
[47] Denys Dutykh,et al. Comparison between three-dimensional linear and nonlinear tsunami generation models , 2007 .
[48] V. A. Dougalis,et al. Numerical solution of KdV-KdV systems of Boussinesq equations: I. The numerical scheme and generalized solitary waves , 2007, Math. Comput. Simul..
[49] S. Osher,et al. Weighted essentially non-oscillatory schemes , 1994 .
[50] Min Chen. Exact Traveling-Wave Solutions to Bidirectional Wave Equations , 1998 .
[51] Denys Dutykh,et al. The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation , 2010, 1002.4553.
[52] G. Wei,et al. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves , 1995, Journal of Fluid Mechanics.
[53] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[54] J. Davenport. Editor , 1960 .
[55] H. Hakimzadeh,et al. Part 1 , 2011 .
[56] T. Brooke Benjamin,et al. Hamiltonian structure, symmetries and conservation laws for water waves , 1982, Journal of Fluid Mechanics.
[57] A. I. Delis,et al. Relaxation schemes for the shallow water equations , 2003 .
[58] K. S. Erduran,et al. Hybrid finite‐volume finite‐difference scheme for the solution of Boussinesq equations , 2005 .
[59] George W. Housner,et al. Numerical Model for Tsunami Run-Up , 1970 .
[60] R. Grimshaw. Journal of Fluid Mechanics , 1956, Nature.
[61] M. Schonbek,et al. Existence of solutions for the boussinesq system of equations , 1981 .
[62] Beatrice Pelloni,et al. Numerical modelling of two-way propagation of non-linear dispersive waves , 2001 .
[63] Ying Li. Non-breaking and breaking solitary wave run-up , 2000, Journal of Fluid Mechanics.
[64] Frédéric Dias,et al. On the fully-nonlinear shallow-water generalized Serre equations , 2010 .
[65] Jean-Michel Ghidaglia,et al. Une méthode volumes finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation , 1996 .
[66] C. Synolakis,et al. The run-up of N-waves on sloping beaches , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[67] S. K. Godunov,et al. Reminiscences about Difference Schemes , 1999 .
[68] D. C. Antonopoulos,et al. INITIAL-BOUNDARY-VALUE PROBLEMS FOR THE BONA-SMITH FAMILY OF BOUSSINESQ SYSTEMS , 2009 .
[69] Philippe Bonneton,et al. A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II : boundary conditions and validation , 2007 .
[70] E. Tadmor,et al. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .
[71] Jerry L. Bona,et al. A model for the two-way propagation of water waves in a channel , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.
[72] Vasily Titov,et al. Numerical Modeling of Tidal Wave Runup , 1998 .
[73] Qin Chen,et al. Funwave 1.0: Fully Nonlinear Boussinesq Wave Model - Documentation and User's Manual , 1998 .
[74] M. Nicholas,et al. Coastal engineering. , 1969, Science.
[75] Emmanuel Audusse,et al. A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..
[76] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[77] Philippe Bonneton,et al. Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation , 2009 .
[78] A. Peratt,et al. Resonances in light scattered from a plasma in a magnetic field , 1975 .
[79] V. A. Dougalis,et al. Numerical solution of the 'classical' Boussinesq system , 2012, Math. Comput. Simul..
[80] Doron Levy,et al. Local discontinuous Galerkin methods for nonlinear dispersive equations , 2004 .
[81] S. Osher,et al. Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .
[82] Dimitrios Mitsotakis,et al. Theory and Numerical Analysis of Boussinesq Systems: A Review , 2008 .
[83] Anjan Kundu. Tsunami and nonlinear waves , 2007 .
[84] Philippe Bonneton,et al. A fourth‐order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq‐type equations. Part I: model development and analysis , 2006 .
[85] Clive G. Mingham,et al. A temporally second-order accurate Godunov-type scheme for solving the extended Boussinesq equations , 2009 .
[86] D. Korteweg,et al. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .
[87] C. Amick,et al. Regularity and uniqueness of solutions to the Boussinesq system of equations , 1984 .
[88] Spencer J. Sherwin,et al. An unstructured spectral/hp element model for enhanced Boussinesq-type equations , 2006 .
[89] Maurizio Brocchini,et al. On the shoreline boundary conditions for Boussinesq‐type models , 2001 .
[90] A. Durán,et al. A Numerical Study of the Stability of Solitary Waves of the Bona–Smith Family of Boussinesq Systems , 2007, J. Nonlinear Sci..
[91] M. J. Simon,et al. Wave-energy extraction by a submerged cylindrical resonant duct , 1981 .
[92] 乔玉平. 海角港(Dalrymple湾)简介 , 2004 .
[93] C. E. Synolakis,et al. Validation and Verification of Tsunami Numerical Models , 2008 .