Efficient Antenna Modeling by DGTD: Leap-frog discontinuous Galerkin timedomain method.

An essential characteristic for the accurate simulation of wideband antenna systems is the modeling of their intricate geometrical details, including the feeding ports. In this article, we describe a leap-frog (LF) discontinuous Galerkin (DG) time-domain (TD) method combined with an efficient local time-stepping (LTS) strategy to deal with the high contrast in the element sizes for the electromagnetic modeling of these kinds of structures. The traditional delta-gap source model and a realistic coaxial port model are revisited. Numerical examples are presented and validated with measurements and commercial software simulations to demonstrate the applicability of the proposed approach.

[1]  Thomas Weiland,et al.  Efficient large scale electromagnetic simulations using dynamically adapted meshes with the discontinuous Galerkin method , 2011, J. Comput. Appl. Math..

[2]  Stéphane Lanteri,et al.  A high-order non-conforming discontinuous Galerkin method for time-domain electromagnetics , 2010, J. Comput. Appl. Math..

[3]  J. Hesthaven,et al.  High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  J. V. D. Vegt,et al.  Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .

[5]  Jin-Fa Lee,et al.  Time-domain finite-element methods , 1997 .

[6]  Stephen D. Gedney,et al.  The Discontinuous Galerkin Finite-Element Time-Domain Method Solution of Maxwell ’ s Equations , 2009 .

[7]  Jesus Alvarez,et al.  A Leap-Frog Discontinuous Galerkin Time-Domain Method for HIRF Assessment , 2013, IEEE Transactions on Electromagnetic Compatibility.

[8]  Chao-Fu Wang,et al.  Higher-Order DG-FETD Modeling of Wideband Antennas With Resistive Loading , 2013, IEEE Antennas and Wireless Propagation Letters.

[9]  S. Piperno Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems , 2006 .

[10]  Serge Piperno,et al.  DGTD methods using modal basis functions and symplectic local time-stepping , 2006 .

[11]  Pingwen Zhang,et al.  Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions , 2004 .

[12]  E. Montseny,et al.  Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell's equations , 2008, J. Comput. Phys..

[13]  J. Alvarez,et al.  3-D Discontinuous Galerkin Time-Domain Method for Anisotropic Materials , 2012, IEEE Antennas and Wireless Propagation Letters.

[14]  R. Mittra,et al.  A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects , 1997 .

[15]  Gary Cohen,et al.  A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time domain , 2006, J. Comput. Phys..

[16]  Z. Cendes,et al.  Keeping Time with Maxwell's Equations , 2010, IEEE Microwave Magazine.

[17]  J. P. Webb Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements , 1999 .

[18]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[19]  T. W. Hertel,et al.  On the convergence of common FDTD feed models for antennas , 2003 .

[20]  Salvador G Garcia,et al.  Source and Boundary Implementation in Vector and Scalar DGTD , 2010, IEEE Transactions on Antennas and Propagation.

[21]  Zheng Lou,et al.  Modeling and simulation of broad-band antennas using the time-domain finite element method , 2005 .

[22]  Sascha M. Schnepp,et al.  Error-driven dynamical hp-meshes with the Discontinuous Galerkin Method for three-dimensional wave propagation problems , 2013, J. Comput. Appl. Math..

[23]  Jin-Fa Lee,et al.  Interior Penalty Discontinuous Galerkin Finite Element Method for the Time-Dependent First Order Maxwell's Equations , 2010, IEEE Transactions on Antennas and Propagation.

[24]  L. Fezoui,et al.  Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .

[25]  Jaroslav Kruis,et al.  Adaptive hp-FEM with dynamical meshes for transient heat and moisture transfer problems , 2010, J. Comput. Appl. Math..

[26]  Amelia Rubio Bretones,et al.  A Spurious-Free Discontinuous Galerkin Time-Domain Method for the Accurate Modeling of Microwave Filters , 2012, IEEE Transactions on Microwave Theory and Techniques.

[27]  Fredrik Edelvik,et al.  A comparison of time‐domain hybrid solvers for complex scattering problems , 2002 .

[28]  Costas D. Sarris,et al.  Adaptive Mesh Refinement for Time-Domain Numerical Electromagnetics , 2006, Adaptive Mesh Refinement for Time-Domain Numerical Electromagnetics.

[29]  Omar M. Ramahi,et al.  Source selection criteria for FDTD models , 1998, 1998 IEEE EMC Symposium. International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.98CH36253).

[30]  Kurt Busch,et al.  Comparison of Low-Storage Runge-Kutta Schemes for Discontinuous Galerkin Time-Domain Simulations of Maxwell's Equations , 2010 .