Finite Field Fault-Tolerant Digital Filtering Architectures

Digital filtering architectures that simultaneously offer advantages for VLSI fabrication and contain distributed error control are presented. Such structures require parallelism as well as inherent error- control capabilities because VLSI implementations are susceptible to temporary and intermittent hardware errors. The filtering convolution operation is similar to the formation of cyclicerror-correcting codes so that fault-tolerant systems employing finite field arithmetic may be designed containing such codes imbedded directly in the architecture. The interconnection of such systems produces a fault-tolerant system. In addition, the subsystems possess a common design structure which is easily customized to the particular field required, an attractive feature for yield enhancement. Straightforward realizations depending on parallel algebraic decompositions are studied, introducing the locations for fault tolerance and the role of cyclic codes.

[1]  W. K. Jenkins,et al.  Redundant residue number systems for error detection and correction in digital filters , 1980 .

[2]  Meghanad D. Wagh,et al.  A new structured design method for convolutions over finite fields, Part I , 1983, IEEE Trans. Inf. Theory.

[3]  H. Nussbaumer Fast Fourier transform and convolution algorithms , 1981 .

[4]  Piero Maestrini,et al.  Error Correcting Properties of Redundant Residue Number Systems , 1973, IEEE Transactions on Computers.

[5]  David Mandelbaum MANDELBAUM : ERROR CORRECTION IN RESIDUE ARITHMETIC , 2022 .

[6]  R. Blahut Theory and practice of error control codes , 1983 .

[7]  W.K. Jenkins,et al.  Special properties of complement codes for redundant residue number systems , 1981, Proceedings of the IEEE.

[8]  James L. Massey,et al.  Review of 'Error-Correcting Codes, 2nd edn.' (Peterson, W. W., and Weldon, E. J., Jr.; 1972) , 1973, IEEE Trans. Inf. Theory.

[9]  Piero Maestrini,et al.  Error Codes Constructed in Residue Number Systems with Non-Pairwise-Prime Moduli , 1980, Inf. Control..

[10]  Arthur Gill,et al.  Decomposition of linear sequential circuits over residue class rings , 1972 .

[11]  G. Robert Redinbo,et al.  Fast algorithms for signal processing using finite field operations , 1982, ICASSP.

[12]  Alan V. Oppenheim,et al.  Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Richard I. Tanaka,et al.  Residue arithmetic and its applications to computer technology , 1967 .

[14]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[15]  Ian F. Blake,et al.  The mathematical theory of coding , 1975 .

[16]  M. H. Etzel,et al.  Digital filters with fault tolerance , 1979 .

[17]  Charles M. Rader,et al.  Digital processing of signals , 1983 .

[18]  G. Redinbo Fault-tolerant digital filtering architectures using fast finite field transforms , 1985 .

[19]  W. Kenneth Jenkins,et al.  The use of residue number systems in the design of finite impulse response digital filters , 1977 .

[20]  N. Ahmed,et al.  FAST TRANSFORMS, algorithms, analysis, applications , 1983, Proceedings of the IEEE.

[21]  R.C. Agarwal,et al.  Number theory in digital signal processing , 1980, Proceedings of the IEEE.

[22]  R. Thrall,et al.  Rings with minimum condition , 1944 .

[23]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .

[24]  David Mandelbaum On Error Control in Sequential Machines , 1972, IEEE Transactions on Computers.