On the Design of Interpretable Evolutionary Fuzzy Systems (I-EFS) with Improved Accuracy

Interpretability and accuracy are two important requirements during the development of fuzzy systems. This paper discusses various approaches related to the development of fuzzy systems in an Evolutionary Multiobjective Optimization (EMO) framework with good degree of interpretability and accuracy which are conflicting in their nature. This situation is well known as Interpretability-Accuracy (I-A) Trade-Off. Rule selection, rule learning, membership function tuning, fuzzy partition etc. are the major point of consideration to deal with this trade-off. Finally various recent issues related to this area in EMO framework are discussed.

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  E. H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Man Mach. Stud..

[3]  Hong Yan,et al.  Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition , 1996, Advances in Fuzzy Systems - Applications and Theory.

[4]  Dr. Hans Hellendoorn,et al.  An Introduction to Fuzzy Control , 1996, Springer Berlin Heidelberg.

[5]  John Yen,et al.  Simplifying fuzzy rule-based models using orthogonal transformation methods , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[6]  Yeung Yam,et al.  Reduction of fuzzy rule base via singular value decomposition , 1999, IEEE Trans. Fuzzy Syst..

[7]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[8]  Yaochu Jin,et al.  Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement , 2000, IEEE Trans. Fuzzy Syst..

[9]  Joos Vandewalle,et al.  Constructing fuzzy models with linguistic integrity from numerical data-AFRELI algorithm , 2000, IEEE Trans. Fuzzy Syst..

[10]  Francisco Herrera,et al.  A proposal for improving the accuracy of linguistic modeling , 2000, IEEE Trans. Fuzzy Syst..

[11]  Aravind Seshadri,et al.  A FAST ELITIST MULTIOBJECTIVE GENETIC ALGORITHM: NSGA-II , 2000 .

[12]  Bin-Da Liu,et al.  Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[13]  Chih-Ming Chen,et al.  An efficient fuzzy classifier with feature selection based on fuzzy entropy , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[14]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[15]  Magne Setnes,et al.  Compact and transparent fuzzy models and classifiers through iterative complexity reduction , 2001, IEEE Trans. Fuzzy Syst..

[16]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[17]  Luis Magdalena,et al.  Interpretability Improvements to Find the Balance Interpretability-Accuracy in Fuzzy Modeling: An Overview , 2003 .

[18]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[19]  F. Herrera,et al.  Accuracy Improvements in Linguistic Fuzzy Modeling , 2003 .

[20]  Francisco Herrera,et al.  Ten years of genetic fuzzy systems: current framework and new trends , 2004, Fuzzy Sets Syst..

[21]  Hisao Ishibuchi,et al.  Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining , 2004, Fuzzy Sets Syst..

[22]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .

[23]  H. Ishibuchi Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases , 2004 .

[24]  Khaled Belarbi,et al.  Design of Mamdani fuzzy logic controllers with rule base minimisation using genetic algorithm , 2005, Eng. Appl. Artif. Intell..

[25]  María José del Jesús,et al.  Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction , 2005, IEEE Transactions on Fuzzy Systems.

[26]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[27]  Hisao Ishibuchi,et al.  Modification of Evolutionary Multiobjective Optimization Algorithms for Multiobjective Design of Fuzzy Rule-Based Classification Systems , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[28]  Francisco Herrera,et al.  Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions , 2005 .

[29]  Francisco Herrera,et al.  Stratification for scaling up evolutionary prototype selection , 2005, Pattern Recognit. Lett..

[30]  Ralf Mikut,et al.  Interpretability issues in data-based learning of fuzzy systems , 2005, Fuzzy Sets Syst..

[31]  I. Kallel,et al.  Accuracy Preserving Interpretability with Hybrid Hierarchical Genetic Fuzzy Modeling: Case of Motion Planning Robot Controller , 2006, 2006 International Symposium on Evolving Fuzzy Systems.

[32]  Jesús Alcalá-Fdez,et al.  Hybrid learning models to get the interpretability–accuracy trade-off in fuzzy modeling , 2006, Soft Comput..

[33]  Francisco Herrera,et al.  A Multi-Objective Genetic Algorithm for Tuning and Rule Selection to Obtain Accurate and Compact Linguistic Fuzzy Rule-Based Systems , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[34]  Hisao Ishibuchi,et al.  Evolutionary Multiobjective Design of Fuzzy Rule-Based Systems , 2007, 2007 IEEE Symposium on Foundations of Computational Intelligence.

[35]  Beatrice Lazzerini,et al.  A Pareto-based multi-objective evolutionary approach to the identification of Mamdani fuzzy systems , 2007, Soft Comput..

[36]  Hisao Ishibuchi,et al.  Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning , 2007, Int. J. Approx. Reason..

[37]  Héctor Pomares,et al.  Improving the accuracy while preserving the interpretability of fuzzy function approximators by means of multi-objective evolutionary algorithms , 2007, Int. J. Approx. Reason..

[38]  Francisco Herrera,et al.  Genetic fuzzy systems: taxonomy, current research trends and prospects , 2008, Evol. Intell..

[39]  Anna Maria Fanelli,et al.  Interpretability constraints for fuzzy information granulation , 2008, Inf. Sci..

[40]  Francisco Herrera,et al.  Knowledge Base Learning of Linguistic Fuzzy Rule-Based Systems in a Multi-objective Evolutionary Framework , 2008, HAIS.

[41]  Alessio Botta,et al.  Context adaptation of mamdani fuzzy rule based systems , 2008, Int. J. Intell. Syst..

[42]  Lishan Kang,et al.  A New Evolutionary Algorithm for Solving Many-Objective Optimization Problems , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[43]  Hannu Koivisto,et al.  Developing a bioaerosol detector using hybrid genetic fuzzy systems , 2008, Eng. Appl. Artif. Intell..

[44]  Hannu Koivisto,et al.  Fuzzy classifier identification using decision tree and multiobjective evolutionary algorithms , 2008, Int. J. Approx. Reason..

[45]  Francisco Herrera,et al.  Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems , 2008, Soft Comput..

[46]  Jorge Casillas Embedded Genetic Learning of Highly Interpretable Fuzzy Partitions , 2009, IFSA/EUSFLAT Conf..

[47]  Hisao Ishibuchi,et al.  Interactive Fuzzy Modeling by Evolutionary Multiobjective Optimization with User Preference , 2009, IFSA/EUSFLAT Conf..

[48]  Hisao Ishibuchi,et al.  Incorporation of user preference into multi-objective genetic fuzzy rule selection for pattern classification problems , 2009, Artificial Life and Robotics.

[49]  Hisao Ishibuchi,et al.  Interactive genetic fuzzy rule selection through evolutionary multiobjective optimization with user preference , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[50]  Francisco Herrera,et al.  Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms , 2009, Fuzzy Sets Syst..

[51]  Beatrice Lazzerini,et al.  Learning Concurrently Granularity, Membership Function Parameters and Rules of Mamdani Fuzzy Rule-based Systems , 2009, IFSA/EUSFLAT Conf..

[52]  Beatrice Lazzerini,et al.  Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework , 2009, Int. J. Approx. Reason..

[53]  Hisao Ishibuchi,et al.  Search ability of evolutionary multiobjective optimization algorithms for multiobjective fuzzy genetics-based machine learning , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[54]  Alessio Botta,et al.  Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index , 2008, Soft Comput..

[55]  Francisco Herrera,et al.  A Multiobjective Evolutionary Approach to Concurrently Learn Rule and Data Bases of Linguistic Fuzzy-Rule-Based Systems , 2009, IEEE Transactions on Fuzzy Systems.

[56]  Hannu Koivisto,et al.  A Genetic Fuzzy System with Inconsistent Rule Removal and Decision Tree Initialization , 2009 .

[57]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[58]  José M. Alonso,et al.  Special issue on interpretable fuzzy systems , 2011, Inf. Sci..

[59]  Hisao Ishibuchi,et al.  Toward quantitative definition of explanation ability of fuzzy rule-based classifiers , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[60]  Andri Riid,et al.  Interpretability, Interpolation and Rule Weights in Linguistic Fuzzy Modeling , 2011, WILF.

[61]  Francisco Herrera,et al.  Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures , 2011, Inf. Sci..

[62]  Surya Prakash Tripathi,et al.  A Survey on Interpretability-Accuracy (I-A) Trade-Off in Evolutionary Fuzzy Systems , 2011, 2011 Fifth International Conference on Genetic and Evolutionary Computing.

[63]  José M. Alonso,et al.  An Empirical Study on Interpretability Indexes through Multi-objective Evolutionary Algorithms , 2011, WILF.

[64]  Anna Maria Fanelli,et al.  Interpretability assessment of fuzzy knowledge bases: A cointension based approach , 2011, Int. J. Approx. Reason..