On the strong stability of symplectic matrices

SUMMARY The strong stability of a symplectic matrix is investigated from algorithmic and numerical viewpoints using a theory developed by S.K. Godunov. This theory is based on a different formulation of the Krein-Gelfand-Lidskii characterization of strong stability, better suited for numerical calculations. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Miloud Sadkane,et al.  Spectral Analysis of Symplectic Matrices with Application to the Theory of Parametric Resonance , 2006, SIAM J. Matrix Anal. Appl..

[2]  Miloud Sadkane,et al.  A spectral trichotomy method for symplectic matrices , 2009, Numerical Algorithms.

[3]  S. K. Godunov Verification of boundedness for the powers of symplectic matrices with the help of averaging , 1992 .

[4]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[5]  F. Tisseur,et al.  STRUCTURED TOOLS FOR STRUCTURED MATRICES , 2003 .

[6]  Ahmed Salam,et al.  On theoretical and numerical aspects of symplectic Gram–Schmidt-like algorithms , 2005, Numerical Algorithms.

[7]  Leiba Rodman,et al.  Matrices and indefinite scalar products , 1983 .

[8]  P. Lancaster,et al.  Indefinite Linear Algebra and Applications , 2005 .

[9]  Tosio Kato Perturbation theory for linear operators , 1966 .

[10]  M. G. Krein,et al.  The Basic Propositions of the Theory of λ-Zones of Stability of a Canonical System of Linear Differential Equations with Periodic Coefficients , 1983 .

[11]  M. Sadkane,et al.  Numerical Determination of a Canonical Form of a Symplectic Matrix , 2001 .

[12]  M. Sadkane,et al.  Some new algorithms for the spectral dichotomy methods , 2003 .

[13]  M. S. P. Eastham LINEAR DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS VOLS. 1 AND 2 , 1977 .

[14]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[15]  Babak Hassibi,et al.  Indefinite-Quadratic Estimation And Control , 1987 .