Chaos, complexity, and random matrices

A bstractChaos and complexity entail an entropic and computational obstruction to describing a system, and thus are intrinsically difficult to characterize. In this paper, we consider time evolution by Gaussian Unitary Ensemble (GUE) Hamiltonians and analytically compute out-of-time-ordered correlation functions (OTOCs) and frame potentials to quantify scrambling, Haar-randomness, and circuit complexity. While our random matrix analysis gives a qualitatively correct prediction of the late-time behavior of chaotic systems, we find unphysical behavior at early times including an O1$$ \mathcal{O}(1) $$ scrambling time and the apparent breakdown of spatial and temporal locality. The salient feature of GUE Hamiltonians which gives us computational traction is the Haar-invariance of the ensemble, meaning that the ensemble-averaged dynamics look the same in any basis. Motivated by this property of the GUE, we introduce k-invariance as a precise definition of what it means for the dynamics of a quantum system to be described by random matrix theory. We envision that the dynamical onset of approximate k-invariance will be a useful tool for capturing the transition from early-time chaos, as seen by OTOCs, to late-time chaos, as seen by random matrix theory.

[1]  Ethan Dyer,et al.  2D CFT partition functions at late times , 2016, 1611.04592.

[2]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[3]  Jordan S. Cotler,et al.  Black holes and random matrices , 2016, 1611.04650.

[4]  Riccardo D'Auria,et al.  KK Spectroscopy of Type IIB Supergravity on $AdS_{5} \times T^{11}$ , 1999 .

[5]  F. Brandão,et al.  Convergence to equilibrium under a random Hamiltonian. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  P. Hayden,et al.  Towards the fast scrambling conjecture , 2011, Journal of High Energy Physics.

[7]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[8]  J. Maldacena,et al.  Eternal black holes in anti-de Sitter , 2001, hep-th/0106112.

[9]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[10]  S. Shenker,et al.  Stringy effects in scrambling , 2014, 1412.6087.

[11]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[12]  M. Rigol,et al.  From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.

[13]  Michael V Berry,et al.  Regular and irregular semiclassical wavefunctions , 1977 .

[14]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[15]  A. Campo,et al.  Scrambling the spectral form factor: Unitarity constraints and exact results , 2017, 1702.04350.

[16]  A. Larkin,et al.  Quasiclassical Method in the Theory of Superconductivity , 1969 .

[17]  V. Balasubramanian,et al.  Echoes of chaos from string theory black holes , 2016, Journal of High Energy Physics.

[18]  L. A. Granado Cardoso,et al.  Measurement of forward Z → e+e− production at s=8$$ \sqrt{s}=8 $$ TeV , 2015, 1503.00963.

[19]  É. Brézin,et al.  Random Matrix Theory with an External Source , 2017 .

[20]  Huangjun Zhu,et al.  Entropic scrambling complexities , 2017 .

[21]  S. Hikami,et al.  Spectral form factor in a random matrix theory , 1997 .

[22]  P. Hayden,et al.  Holographic duality from random tensor networks , 2016, 1601.01694.

[23]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[24]  Srednicki Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  L. Susskind Addendum to computational complexity and black hole horizons , 2014, 1403.5695.

[26]  P. Hayden,et al.  Quantum computation vs. firewalls , 2013, 1301.4504.

[27]  E. Brezin,et al.  Extension of level-spacing universality , 1997 .

[28]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[29]  Ye,et al.  Gapless spin-fluid ground state in a random quantum Heisenberg magnet. , 1992, Physical review letters.

[30]  J. Maldacena,et al.  Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.

[31]  Page Information in black hole radiation. , 1993, Physical review letters.

[32]  W. W. Ho,et al.  The Ergodicity Landscape of Quantum Theories , 2017, 1701.08777.

[33]  B. Collins,et al.  Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group , 2004, math-ph/0402073.

[34]  A. Kamenev,et al.  Power-law out of time order correlation functions in the SYK model , 2017, 1702.08902.

[35]  J. Kaplan,et al.  On the late-time behavior of Virasoro blocks and a classification of semiclassical saddles , 2016, 1609.07153.

[36]  F. Verstraete,et al.  Lieb-Robinson bounds and the generation of correlations and topological quantum order. , 2006, Physical review letters.

[37]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[38]  J. Verbaarschot,et al.  Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model , 2016, 1610.03816.

[39]  R. Prange The Spectral Form Factor Is Not Self-Averaging , 1996, chao-dyn/9606010.

[40]  Daniel A. Roberts,et al.  Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory. , 2015, Physical review letters.

[41]  Adam R. Brown,et al.  Second law of quantum complexity , 2017, 1701.01107.

[42]  F. Brandão,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012, 1208.0692.

[43]  J. Kaplan,et al.  On information loss in AdS3/CFT2 , 2016 .

[44]  T. Tao Topics in Random Matrix Theory , 2012 .

[45]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[46]  E. Mucciolo,et al.  Entanglement Complexity in Quantum Many-Body Dynamics, Thermalization and Localization , 2017, 1703.03420.

[47]  Stephen W. Hawking,et al.  Particle Creation by Black Holes , 1993, Resonance.

[48]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[49]  Daniel A. Roberts,et al.  Complexity, action, and black holes , 2015, 1512.04993.

[50]  J. Sonner,et al.  Eigenstate thermalization in the Sachdev-Ye-Kitaev model , 2017, Journal of High Energy Physics.

[51]  Daniel A. Roberts,et al.  Two-dimensional conformal field theory and the butterfly effect , 2014, 1412.5123.

[52]  F. Brandão,et al.  Finite-Size Scaling of Out-of-Time-Ordered Correlators at Late Times. , 2017, Physical review letters.

[53]  Javier M. Magán Random Free Fermions: An Analytical Example of Eigenstate Thermalization. , 2015, Physical review letters.

[54]  W. Unruh Notes on black-hole evaporation , 1976 .

[55]  Peter Atkins The Second Law , 1984 .

[56]  Don Weingarten,et al.  Asymptotic behavior of group integrals in the limit of infinite rank , 1978 .

[57]  Daniel A. Roberts,et al.  Chaos in quantum channels , 2015, 1511.04021.

[58]  L. Susskind Computational complexity and black hole horizons , 2014, 1402.5674.

[59]  S. Lloyd,et al.  Entanglement, quantum randomness, and complexity beyond scrambling , 2017, Journal of High Energy Physics.

[60]  L. Erdős,et al.  Phase Transition in the Density of States of Quantum Spin Glasses , 2014 .

[61]  J. Kaplan,et al.  On information loss in AdS3/CFT2 , 2016, Journal of High Energy Physics.

[62]  A. J. Scott Optimizing quantum process tomography with unitary 2-designs , 2007, 0711.1017.

[63]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[64]  S. Shenker,et al.  Black holes and the butterfly effect , 2013, Journal of High Energy Physics.

[65]  Richard Andrew Low,et al.  Pseudo-randonmess and Learning in Quantum Computation , 2010, 1006.5227.

[66]  Jordan S. Cotler,et al.  Locality from the Spectrum , 2017 .

[67]  Daniel A. Roberts,et al.  Chaos and complexity by design , 2016, 1610.04903.

[68]  A. Ludwig,et al.  Sachdev-Ye-Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry-protected topological states , 2016, 1602.06964.

[69]  Omar Fawzi,et al.  Decoupling with Random Quantum Circuits , 2013, Communications in Mathematical Physics.

[70]  P. Diaconis,et al.  On the eigenvalues of random matrices , 1994, Journal of Applied Probability.

[71]  Benoit Collins,et al.  Moments and cumulants of polynomial random variables on unitarygroups, the Itzykson-Zuber integral, and free probability , 2002 .