Partitions of Minimal Length on Manifolds

ABSTRACT We study partitions on three-dimensional manifolds which minimize the total geodesic perimeter. We propose a relaxed framework based on a Γ-convergence result and we show some numerical results. We compare our results to those already present in the literature in the case of the sphere. For general surfaces we provide an optimization algorithm on meshes which can give a good approximation of the optimal cost, starting from the results obtained using the relaxed formulation.

[1]  Joseph Corneli,et al.  THE DOUBLE BUBBLE PROBLEM ON THE FLAT TWO-TORUS , 2003 .

[2]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[3]  Thomas C. Hales,et al.  The Honeycomb Conjecture , 1999, Discret. Comput. Geom..

[4]  D. Somasundaram Differential Geometry: A First Course , 2005 .

[5]  The Honeycomb Problem on the Sphere , 2002, math/0211234.

[6]  Omer Angel,et al.  Random Subnetworks of Random Sorting Networks , 2010, Electron. J. Comb..

[7]  S. Baldo,et al.  Cycles of least mass in a riemannian manifold, described through the “phase transition” energy of the sections of a line bundle , 1997 .

[8]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[9]  Frank Morgan,et al.  Soap bubbles in ${\bf R}^2$ and in surfaces. , 1994 .

[10]  S. J. Cox,et al.  The Minimal Perimeter for N Confined Deformable Bubbles of Equal Area , 2010, Electron. J. Comb..

[11]  Édouard Oudet,et al.  Approximation of Partitions of Least Perimeter by Γ-Convergence: Around Kelvin’s Conjecture , 2011, Exp. Math..

[12]  Giuseppe Buttazzo,et al.  Gamma-convergence and its Applications to Some Problems in the Calculus of Variations , 2004 .

[13]  R. Gabbrielli,et al.  A new counter-example to Kelvin's conjecture on minimal surfaces , 2009 .

[14]  Joseph D. Masters,et al.  The perimeter-minimizing enclosure of two areas in S2 , 1996 .

[15]  Felix Bernstein,et al.  Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene , 1905 .

[16]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[17]  F. Morgan,et al.  SOAP BUBBLES IN R2 AND IN SURFACES , 2012 .

[18]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[19]  Giovanni Alberti,et al.  Variational models for phase transitions, an approach via Γ-convergence , 2000 .

[20]  Andrea Braides Approximation of Free-Discontinuity Problems , 1998 .

[21]  Max Engelstein,et al.  The Least-Perimeter Partition of a Sphere into Four Equal Areas , 2009, Discret. Comput. Geom..