Partitions of Minimal Length on Manifolds
暂无分享,去创建一个
[1] Joseph Corneli,et al. THE DOUBLE BUBBLE PROBLEM ON THE FLAT TWO-TORUS , 2003 .
[2] Ronald F. Gariepy. FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .
[3] Thomas C. Hales,et al. The Honeycomb Conjecture , 1999, Discret. Comput. Geom..
[4] D. Somasundaram. Differential Geometry: A First Course , 2005 .
[5] The Honeycomb Problem on the Sphere , 2002, math/0211234.
[6] Omer Angel,et al. Random Subnetworks of Random Sorting Networks , 2010, Electron. J. Comb..
[7] S. Baldo,et al. Cycles of least mass in a riemannian manifold, described through the “phase transition” energy of the sections of a line bundle , 1997 .
[8] Antoine Henrot,et al. Variation et optimisation de formes , 2005 .
[9] Frank Morgan,et al. Soap bubbles in ${\bf R}^2$ and in surfaces. , 1994 .
[10] S. J. Cox,et al. The Minimal Perimeter for N Confined Deformable Bubbles of Equal Area , 2010, Electron. J. Comb..
[11] Édouard Oudet,et al. Approximation of Partitions of Least Perimeter by Γ-Convergence: Around Kelvin’s Conjecture , 2011, Exp. Math..
[12] Giuseppe Buttazzo,et al. Gamma-convergence and its Applications to Some Problems in the Calculus of Variations , 2004 .
[13] R. Gabbrielli,et al. A new counter-example to Kelvin's conjecture on minimal surfaces , 2009 .
[14] Joseph D. Masters,et al. The perimeter-minimizing enclosure of two areas in S2 , 1996 .
[15] Felix Bernstein,et al. Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene , 1905 .
[16] T. Banchoff,et al. Differential Geometry of Curves and Surfaces , 2010 .
[17] F. Morgan,et al. SOAP BUBBLES IN R2 AND IN SURFACES , 2012 .
[18] Kenneth A. Brakke,et al. The Surface Evolver , 1992, Exp. Math..
[19] Giovanni Alberti,et al. Variational models for phase transitions, an approach via Γ-convergence , 2000 .
[20] Andrea Braides. Approximation of Free-Discontinuity Problems , 1998 .
[21] Max Engelstein,et al. The Least-Perimeter Partition of a Sphere into Four Equal Areas , 2009, Discret. Comput. Geom..