Quadrature Spatial Modulation for 5G Outdoor Millimeter–Wave Communications: Capacity Analysis

Capacity analysis for millimeter–wave (mmWave) quadrature spatial modulation (QSM) multiple-input multiple-output (MIMO) system is presented in this paper. QSM is a new MIMO technique proposed to enhance the performance of conventional spatial modulation (SM) while retaining almost all its inherent advantages. Furthermore, mmWave utilizes a wide-bandwidth spectrum and is a very promising candidate for future wireless systems. Detailed and novel analysis of the mutual information and the achievable capacity for mmWave–QSM system using a 3-D statistical channel model for outdoor mmWave communications are presented in this paper. Monte Carlo simulation results are provided to corroborate derived formulas. Obtained results reveal that the 3-D mmWave channel model can be closely approximated by a log–normal fading channel. The conditions under which capacity can be achieved are derived and discussed. It is shown that the capacity of QSM system can be achieved, by carefully designing the constellation symbols for each specific channel model.

[1]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[2]  Min Young Chung,et al.  Radio resource management for 5G mobile communication systems with massive antenna structure , 2016, Trans. Emerg. Telecommun. Technol..

[3]  Upamanyu Madhow,et al.  Channel modeling for millimeter wave MIMO , 2010, 2010 Information Theory and Applications Workshop (ITA).

[4]  Jonathan Wells,et al.  Multigigabit wireless technology at 70 GHz , 80 GHz and 90 GHz , 2022 .

[5]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[6]  Xiang Cheng,et al.  Differential Spatial Modulation , 2015, IEEE Transactions on Vehicular Technology.

[7]  Harald Haas,et al.  Generalised spatial modulation for large-scale MIMO , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[8]  Harald Haas,et al.  Performance Analysis for Generalised Spatial Modulation , 2014 .

[9]  Robert W. Heath,et al.  Simplified Spatial Correlation Models for Clustered MIMO Channels With Different Array Configurations , 2007, IEEE Transactions on Vehicular Technology.

[10]  Wei Xiang,et al.  Ergodic capacity analysis of spatially modulated systems , 2013, China Communications.

[11]  Harald Haas,et al.  Generalised Sphere Decoding for Spatial Modulation , 2013, IEEE Trans. Commun..

[12]  Safieddin Safavi-Naeini,et al.  Empirical MIMO beamforming and channel measurements at 57-64 GHz frequencies , 2015, Trans. Emerg. Telecommun. Technol..

[13]  Xiang Cheng,et al.  A Dual-Hop Virtual MIMO Architecture Based on Hybrid Differential Spatial Modulation , 2016, IEEE Transactions on Wireless Communications.

[14]  Miaowen Wen,et al.  Low-Complexity ML Detector and Performance Analysis for OFDM With In-Phase/Quadrature Index Modulation , 2015, IEEE Communications Letters.

[15]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[16]  V. Kühn Wireless Communications over MIMO Channels: Applications to CDMA and Multiple Antenna Systems , 2006 .

[17]  Bingli Jiao,et al.  On the capacity of information-guided channel-hopping in multi-antenna system , 2008, IEEE INFOCOM Workshops 2008.

[18]  Ertugrul Basar,et al.  Index modulation techniques for 5G wireless networks , 2016, IEEE Communications Magazine.

[19]  Harald Haas,et al.  Generalised spatial modulation , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[20]  Raed Yousef Mesleh Spatial modulation : a spatial multiplexing technique for efficient wireless data transmission , 2007 .

[21]  Lutz H.-J. Lampe,et al.  Multiple-antenna techniques for wireless communications - a comprehensive literature survey , 2009, IEEE Communications Surveys & Tutorials.

[22]  Liang Zhou,et al.  Performance Analysis of mmWave LOS-MIMO Systems with Uniform Circular Arrays , 2015, 2015 IEEE 81st Vehicular Technology Conference (VTC Spring).

[23]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[24]  Alberto Leon-Garcia,et al.  Probability and Random Processes For EE's (3rd Edition) , 2007 .

[25]  Andreas Springer,et al.  Space Shift Keying for LOS Communication at mmWave Frequencies , 2015, IEEE Wireless Communications Letters.

[26]  Harald Haas,et al.  Spatial Modulation , 2008, IEEE Transactions on Vehicular Technology.

[27]  Theodore S. Rappaport,et al.  MIMO channel modeling and capacity analysis for 5G millimeter-wave wireless systems , 2015, 2016 10th European Conference on Antennas and Propagation (EuCAP).

[28]  Theodore S. Rappaport,et al.  3D mmWave Channel Model Proposal , 2014, 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall).

[29]  Jim Esch Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation , 2014, Proc. IEEE.

[30]  Zhouyue Pi,et al.  An introduction to millimeter-wave mobile broadband systems , 2011, IEEE Communications Magazine.

[31]  Lajos Hanzo,et al.  Generalized-Spatial-Modulation-Based Reduced-RF-Chain Millimeter-Wave Communications , 2017, IEEE Transactions on Vehicular Technology.

[32]  Xiang Cheng,et al.  A Low-Complexity Near-ML Differential Spatial Modulation Detector , 2015, IEEE Signal Processing Letters.

[33]  Harald Haas,et al.  Spatial modulation for massive MIMO , 2015, 2015 IEEE International Conference on Communications (ICC).

[34]  A. Robert Calderbank,et al.  Nonequiprobable signaling on the Gaussian channel , 1990, IEEE Trans. Inf. Theory.

[35]  Alexander Maltsev,et al.  Practical LOS MIMO Technique for Short-Range Millimeter-Wave Systems , 2015, 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB).

[36]  Yawgeng A. Chau,et al.  Space modulation on wireless fading channels , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[37]  Harald Haas,et al.  Quadrature Spatial Modulation Performance Over Nakagami- $m$ Fading Channels , 2016, IEEE Transactions on Vehicular Technology.

[38]  Theodore S. Rappaport,et al.  72 GHz millimeter wave indoor measurements for wireless and backhaul communications , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[39]  Raed Mesleh,et al.  Quadrature Spatial Modulation , 2015, IEEE Transactions on Vehicular Technology.

[40]  Raed Mesleh,et al.  Quadrature spatial modulation–performance analysis and impact of imperfect channel knowledge , 2017, Trans. Emerg. Telecommun. Technol..

[41]  Ali Ghrayeb,et al.  Space shift keying modulation for MIMO channels , 2009, IEEE Transactions on Wireless Communications.

[42]  P. Vainikainen,et al.  Measurement analysis of spatial and temporal correlation in wideband radio channels with adaptive antenna array , 1998, ICUPC '98. IEEE 1998 International Conference on Universal Personal Communications. Conference Proceedings (Cat. No.98TH8384).

[43]  Theodore S. Rappaport,et al.  3-D statistical channel model for millimeter-wave outdoor mobile broadband communications , 2015, 2015 IEEE International Conference on Communications (ICC).

[44]  J. Wells,et al.  Faster than fiber: The future of multi-G/s wireless , 2009, IEEE Microwave Magazine.

[45]  Marco Di Renzo,et al.  Line-of-Sight Spatial Modulation for Indoor mmWave Communication at 60 GHz , 2016, IEEE Transactions on Wireless Communications.

[46]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[47]  Reiner S. Thomä,et al.  Capacity of MIMO systems based on measured wireless channels , 2002, IEEE J. Sel. Areas Commun..

[48]  Abdelhamid Younis Spatial modulation: theory to practice , 2014 .

[49]  S. Gevorgian Ferroelectrics in Microwave Devices, Circuits and Systems , 2009 .

[50]  Andreas F. Molisch,et al.  The double-directional radio channel , 2001 .

[51]  Bingli Jiao,et al.  Information-guided channel-hopping for high data rate wireless communication , 2008, IEEE Communications Letters.

[52]  Theodore S. Rappaport,et al.  73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in New York City , 2014, 2014 IEEE International Conference on Communications (ICC).

[53]  Bruno Clerckx,et al.  MIMO techniques in WiMAX and LTE: a feature overview , 2010, IEEE Communications Magazine.

[54]  Upamanyu Madhow,et al.  Indoor Millimeter Wave MIMO: Feasibility and Performance , 2011, IEEE Transactions on Wireless Communications.

[55]  Theodore S. Rappaport,et al.  3-D Millimeter-Wave Statistical Channel Model for 5G Wireless System Design , 2016, IEEE Transactions on Microwave Theory and Techniques.

[56]  Harald Haas,et al.  Energy Evaluation of Spatial Modulation at a Multi-Antenna Base Station , 2013, 2013 IEEE 78th Vehicular Technology Conference (VTC Fall).