A twelve-step program for evolving multicellularity and a division of labor.

The volvocine algae provide an unrivalled opportunity to explore details of an evolutionary pathway leading from a unicellular ancestor to multicellular organisms with a division of labor between different cell types. Members of this monophyletic group of green flagellates range in complexity from unicellular Chlamydomonas through a series of extant organisms of intermediate size and complexity to Volvox, a genus of spherical organisms that have thousands of cells and a germ-soma division of labor. It is estimated that these organisms all shared a common ancestor about 50 +/- 20 MYA. Here we outline twelve important ways in which the developmental repertoire of an ancestral unicell similar to modern C. reinhardtii was modified to produce first a small colonial organism like Gonium that was capable of swimming directionally, then a sequence of larger organisms (such as Pandorina, Eudorina and Pleodorina) in which there was an increasing tendency to differentiate two cell types, and eventually Volvox carteri with its complete germ-soma division of labor.

[1]  G. M. Smith A Comparative Study of the Species of Volvox , 1944 .

[2]  J. Stein A morphologic and genetic study of Gonium pectorale , 1958 .

[3]  J. Stein On Cytoplasmic Strands in Gonium pectorale (Volvocales) , 1965 .

[4]  K. Porter,et al.  FINE STRUCTURE OF CELL DIVISION IN CHLAMYDOMONAS REINHARDI , 1968, The Journal of cell biology.

[5]  R. Starr,et al.  Control of differentiation in Volvox. , 1970, The ... Symposium. Society for Developmental Biology. Symposium.

[6]  J. Komárek,et al.  Das Phytoplankton des Süßwassers. Systematik und Biologie - Teil 7, 1. Hälfte , 1982 .

[7]  A. Fulton Colonial development in Pandorina morum. II. Colony morphogenesis and formation of the extracellular matrix. , 1978, Developmental biology.

[8]  D. Kirk,et al.  Mechanism of formation, ultrastructure, and function of the cytoplasmic bridge system during morphogenesis in Volvox , 1981, The Journal of cell biology.

[9]  G. L. Floyd,et al.  DEVELOPMENT OF THE FLAGELLAR APPARATUS AND FLAGELLAR ORIENTATION IN THE COLONIAL GREEN ALGA GONIUM PECTORALE (VOLVOCALES) 1 , 1985 .

[10]  D. Kirk,et al.  Translational regulation of protein synthesis, in response to light, at a critical stage of volvox development , 1985, Cell.

[11]  D. Kirk,et al.  The extracellular matrix of Volvox: a comparative study and proposed system of nomenclature. , 1986, Journal of cell science.

[12]  F. Lottspeich,et al.  An extremely hydroxyproline‐rich glycoprotein is expressed in inverting Volvox embryos , 1986 .

[13]  U. Goodenough,et al.  Nucleated assembly of Chlamydomonas and Volvox cell walls , 1987, The Journal of cell biology.

[14]  P. John Control Points in the Chlamydomonas Cell Cycle , 1987 .

[15]  D. Kirk The ontogeny and phylogeny of cellular differentiation in Volvox. , 1988, Trends in genetics : TIG.

[16]  A. Batko,et al.  Gonium dispersum sp.nova, a new Gonium species from Poland , 1989 .

[17]  Hisayoshi Nozaki Gonium (Volvocales, Chlorophyta)* , 1990 .

[18]  W. Adair,et al.  The Chlamydomonas reinhardtii Cell Wall: Structure, Biochemistry, and Molecular Biology , 1990 .

[19]  M. Melkonian Phylum chlorophyta class chlorophyceae , 1990 .

[20]  Phylogeny of the colonial green flagellates: a study of 18S and 26S rRNA sequence data. , 1991, Bio Systems.

[21]  D. Kirk,et al.  Identification of cell-type-specific genes of Volvox carteri and characterization of their expression during the asexual life cycle. , 1991, Developmental biology.

[22]  D. Kirk,et al.  Molecular phylogeny of the volvocine flagellates. , 1992, Molecular biology and evolution.

[23]  J. Palmer,et al.  Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Ransick,et al.  The relationship between cell size and cell fate in Volvox carteri , 1993, The Journal of cell biology.

[25]  H. Hoops Flagellar, cellular and organismal polarity in Volvox carteri , 1993 .

[26]  S. Stickel,et al.  Monophyletic origins of the metazoa: an evolutionary link with fungi , 1993, Science.

[27]  U. Goodenough,et al.  Volvocine cell walls and their constituent glycoproteins: an evolutionary perspective , 1994 .

[28]  V. Koufopanou,et al.  The Evolution of Soma in the Volvocales , 1994, The American Naturalist.

[29]  M. Sogin,et al.  Ancestral relationships of the major eukaryotic lineages. , 1996, Microbiologia.

[30]  Makoto M. Watanabe,et al.  Ultrastructure of the vegetative colonies and systematic position of Basichlamys (Volvocales, Chlorophyta) , 1996 .

[31]  D. Kirk Volvox: A Search for the Molecular and Genetic Origins of Multicellularity and Cellular Differentiation , 1997 .

[32]  J. Bonner The origins of multicellularity , 1998 .

[33]  Annette W. Coleman,et al.  Volvox: Molecular-Genetic Origins of Multicellularity and Cellular Differentiation. , 1998 .

[34]  Y. Nakamura,et al.  A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tags. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.

[35]  D. Kirk,et al.  glsA, a Volvox gene required for asymmetric division and germ cell specification, encodes a chaperone-like protein. , 1999, Development.

[36]  B. Taillon,et al.  regA, a Volvox gene that plays a central role in germ-soma differentiation, encodes a novel regulatory protein. , 1999, Development.

[37]  A. Coleman Phylogenetic analysis of "Volvocacae" for comparative genetic studies. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Markus Meissner,et al.  Volvox germline-specific genes that are putative targets of RegA repression encode chloroplast proteins , 1999, Current Genetics.

[39]  D. Kirk,et al.  The developmentally regulated ECM glycoprotein ISG plays an essential role in organizing the ECM and orienting the cells of Volvox. , 2000, Journal of cell science.

[40]  M. Melkonian,et al.  Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. , 2001, Protist.

[41]  G. Wray Dating branches on the Tree of Life using DNA , 2001, Genome Biology.

[42]  D. Kirk,et al.  Two enhancers and one silencer located in the introns of regA control somatic cell differentiation in Volvox carteri. , 2001, Genes & development.

[43]  U. Goodenough,et al.  Control of cell division by a retinoblastoma protein homolog in Chlamydomonas. , 2001, Genes & development.

[44]  D. Kirk,et al.  A Kinesin, InvA, Plays an Essential Role in Volvox Morphogenesis , 2003, Cell.

[45]  Armin Hallmann,et al.  Extracellular matrix and sex-inducing pheromone in Volvox. , 2003, International review of cytology.

[46]  P. Lefebvre,et al.  Molecular Map of the Chlamydomonas reinhardtii Nuclear Genome , 2003, Eukaryotic Cell.

[47]  Stephen M. Miller,et al.  The role of GlsA in the evolution of asymmetric cell division in the green alga Volvox carteri , 2003, Development Genes and Evolution.

[48]  H. Marchant Colony formation and inversion in the green algaEudorina elegans , 1977, Protoplasma.

[49]  P. John,et al.  Coordination of division events in theChlamydomonas cell cycle , 1986, Protoplasma.

[50]  N. Larsen,et al.  Phylogenetic relationships of the green algeVolvox carteri deduced from small-subunit ribosomal RNA comparisons , 1989, Journal of Molecular Evolution.