On a set of data for the membrane potential in a neuron.

We consider a set of data where the membrane potential in a pyramidal neuron is measured almost continuously in time, under varying experimental conditions. We use nonparametric estimates for the diffusion coefficient and the drift in view to contribute to the discussion which type of diffusion process is suitable to model the membrane potential in a neuron (more exactly: in a particular type of neuron under particular experimental conditions).

[1]  Susanne Ditlevsen,et al.  Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  M. Hofmann Lp estimation of the diffusion coefficient , 1999 .

[3]  F. Comte,et al.  Adaptive estimation of mean and volatility functions in (auto-)regressive models , 2002 .

[4]  Marc Hoffmann ON ESTIMATING THE DIFFUSION COEFFICIENT: PARAMETRIC VERSUS NONPARAMETRIC , 2001 .

[5]  Henry C. Tuckwell,et al.  Stochastic processes in the neurosciences , 1989 .

[6]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[7]  P. Lánský,et al.  Diffusion approximation of the neuronal model with synaptic reversal potentials , 1987, Biological Cybernetics.

[8]  N. Shephard,et al.  LIMIT THEOREMS FOR BIPOWER VARIATION IN FINANCIAL ECONOMETRICS , 2005, Econometric Theory.

[9]  P Lánský,et al.  The stochastic diffusion models of nerve membrane depolarization and interspike interval generation. , 1999, Journal of the peripheral nervous system : JPNS.

[10]  Yutaka Sakai,et al.  The Ornstein-Uhlenbeck Process Does Not Reproduce Spiking Statistics of Neurons in Prefrontal Cortex , 1999, Neural Computation.

[11]  Laura Sacerdote,et al.  On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity , 1995, Biological Cybernetics.

[12]  R. Capocelli,et al.  Diffusion approximation and first passage time problem for a model neuron , 1971, Biological cybernetics.

[13]  A. Tsybakov,et al.  Introduction à l'estimation non-paramétrique , 2003 .

[14]  Jean Jacod,et al.  A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales , 2004 .

[15]  D. Florens-zmirou On estimating the diffusion coefficient from discrete observations , 1993, Journal of Applied Probability.

[16]  Yuri Kabanov,et al.  From Stochastic Calculus to Mathematical Finance. The Shiryaev Festschrift , 2006 .

[17]  Susanne Ditlevsen,et al.  Estimation of the input parameters in the Feller neuronal model. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Non‐parametric Estimation of the Death Rate in Branching Diffusions , 2002 .

[19]  Peter C. Kiessler,et al.  Statistical Inference for Ergodic Diffusion Processes , 2006 .

[20]  Reinhard Höpfner,et al.  A stochastic model and a functional central limit theorem for information processing in large systems of neurons , 2006, Journal of mathematical biology.

[21]  Henry C. Tuckwell,et al.  The response of a spatially distributed neuron to white noise current injection , 1979, Biological Cybernetics.

[22]  P. Lánský,et al.  Diffusion approximation and first-passage-time problem for a model neuron III. Abirth-and-death process approach , 1988 .

[23]  Laura Sacerdote,et al.  The Ornstein–Uhlenbeck neuronal model with signal-dependent noise , 2001 .

[24]  Non‐parametric Kernel Estimation of the Coefficient of a Diffusion , 2000 .