Image search by concept map

In this paper, we present a novel image search system, image search by concept map. This system enables users to indicate not only what semantic concepts are expected to appear but also how these concepts are spatially distributed in the desired images. To this end, we propose a new image search interface to enable users to formulate a query, called concept map, by intuitively typing textual queries in a blank canvas to indicate the desired spatial positions of the concepts. In the ranking process, by interpreting each textual concept as a set of representative visual instances, the concept map query is translated into a visual instance map, which is then used to evaluate the relevance of the image in the database. Experimental results demonstrate the effectiveness of the proposed system.

[1]  M. J. Enenhofer Spatial-Query-by-Sketch , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[2]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[3]  Christoph H. Lampert,et al.  Learning to Localize Objects with Structured Output Regression , 2008, ECCV.

[4]  Xiaoou Tang,et al.  IntentSearch: interactive on-line image search re-ranking , 2008, ACM Multimedia.

[5]  Jaana Kekäläinen,et al.  IR evaluation methods for retrieving highly relevant documents , 2000, SIGIR '00.

[6]  Rong Yan,et al.  Learning query-class dependent weights in automatic video retrieval , 2004, MULTIMEDIA '04.

[7]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[8]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[9]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[10]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Wei Liu,et al.  MQSearch: image search by multi-class query , 2008, CHI.

[12]  Marcel Worring,et al.  Optimization of interactive visual-similarity-based search , 2008, TOMCCAP.

[13]  Xian-Sheng Hua,et al.  Color-Structured Image Search , 2009 .

[14]  Hao Xu,et al.  Interactive image search by 2D semantic map , 2010, WWW '10.

[15]  Brendan J. Frey,et al.  Non-metric affinity propagation for unsupervised image categorization , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[16]  Nicu Sebe,et al.  Content-based multimedia information retrieval: State of the art and challenges , 2006, TOMCCAP.

[17]  Rong Yan,et al.  Multi-query interactive image and video retrieval -: theory and practice , 2008, CIVR '08.

[18]  Hai Jin,et al.  Label to region by bi-layer sparsity priors , 2009, MM '09.

[19]  Meng Wang,et al.  Visual query suggestion , 2009, ACM Multimedia.

[20]  Shih-Fu Chang,et al.  CuZero: embracing the frontier of interactive visual search for informed users , 2008, MIR '08.

[21]  Alexei A. Efros,et al.  Discovering object categories in image collections , 2005 .

[22]  Shi-Min Hu,et al.  Sketch2Photo: internet image montage , 2009, ACM Trans. Graph..