Construction and heat kernel estimates of general stable-like Markov processes

A stable-like process is a Feller process $(X_t)_{t\geq 0}$ taking values in $\mathbb{R}^d$ and whose generator behaves, locally, like an $\alpha$-stable Levy process, but the index $\alpha$ and all other characteristics may depend on the state space. More precisely, the jump measure need not to be symmetric and it strongly depends on the current state of the process; moreover, we do not require the gradient term to be dominated by the pure jump part. Our approach is to understand the above phenomena as suitable microstructural perturbations. We show that the corresponding martingale problem is well-posed, and its solution is a strong Feller process which admits a transition density. For the transition density we obtain a representation as a sum of an explicitly given principal term -- this is essentially the density of an $\alpha$-stable random variable whose parameters depend on the current state $x$ -- and a residual term; the $L^\infty\otimes L^1$-norm of the residual term is negligible and so is, under an additional structural assumption, the $L^\infty\otimes L^\infty$-norm. Concrete examples illustrate the relation between the assumptions and possible transition density estimates.

[1]  K. Kaleta,et al.  Upper estimates of transition densities for stable-dominated semigroups , 2012, 1209.4096.

[2]  A. Kulik On weak uniqueness and distributional properties of a solution to an SDE with α-stable noise , 2015, Stochastic Processes and their Applications.

[3]  V. Knopova,et al.  Parametrix construction of the transition probability density of the solution to an SDE driven by $\alpha$-stable noise , 2014, 1412.8732.

[4]  Lukasz Kusmierz,et al.  First Order Transition for the Optimal Search Time of Lévy Flights with Resetting. , 2014, Physical review letters.

[5]  Paweł Sztonyk Estimates of densities for Lévy processes with lower intensity of large jumps , 2015, 1505.04831.

[6]  Hiroshi Tanaka,et al.  Perturbation of drift-type for Lévy processes , 1974 .

[7]  William T. Coffey,et al.  Fractals, diffusion, and relaxation in disordered complex systems , 2006 .

[8]  Vassili N. Kolokoltsov,et al.  Symmetric Stable Laws and Stable‐Like Jump‐Diffusions , 2000 .

[9]  H. Pragarauskas,et al.  On the Cauchy Problem for Integro-differential Operators in Hölder Classes and the Uniqueness of the Martingale Problem , 2011, 1103.3492.

[10]  Niels Jacob,et al.  A class of Feller semigroups generated by pseudo differential operators , 1994 .

[11]  A. Kochubei,et al.  Parametrix methods for equations with fractional Laplacians , 2019, Fractional Differential Equations.

[12]  V. Knopova Compound kernel estimates for the transition probability density of a L\'evy process in $\rn$ , 2013, 1310.7081.

[13]  H. Pragarauskas,et al.  On the cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces , 1992 .

[14]  Takashi Komatsu,et al.  On the martingale problem for generators of stable processes with perturbations , 1984 .

[15]  M. Ryznar,et al.  Semigroup properties of solutions of SDEs driven by Lévy processes with independent coordinates , 2019, Stochastic Processes and their Applications.

[16]  R. Schilling Conservativeness and Extensions of Feller Semigroups , 1998 .

[17]  N. Jacob,et al.  Pseudo Differential Operators and Markov Processes: Volume II: Generators and Their Potential Theory , 2002 .

[18]  B. Böttcher A parametrix construction for the fundamental solution of the evolution equation associated with a pseudo‐differential operator generating a Markov process , 2005 .

[19]  V. Knopova,et al.  Heat Kernel of Anisotropic Nonlocal Operators , 2017, Documenta Mathematica.

[20]  Hitoshi Kumano-go Factorizations and fundamental solutions for differential operators of elliptic-hyperbolic type , 1976 .

[21]  Takashi Komatsu,et al.  Markov processes associated with certain integro-differential operators , 1973 .

[22]  Niels Jacob,et al.  Pseudo differential operators with variable order of differentiation generating feller semigroups , 1993 .

[23]  Fractional Derivatives and Fractional Powers as Tools in Understanding Wentzell Boundary Value Problems for Pseudo-Differential Operators Generating Markov Processes , 2005 .

[24]  根来 彬 Stable-like processes : construction of the transition density and the behavior of sample paths near t=0 , 1993 .

[25]  Stephen Taylor,et al.  The potential kernel and hitting probabilities for the general stable process in , 1969 .

[26]  Shahla Molahajloo,et al.  Pseudo-Differential Operators on ℤ , 2009 .

[27]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[28]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[29]  F. Kühn Transition probabilities of Lévy‐type processes: Parametrix construction , 2018, Mathematische Nachrichten.

[30]  Hitoshi Kumano-go Fundamental solutions for operators of regularly hyperbolic type , 1977 .

[31]  V. Knopova,et al.  Intrinsic compound kernel estimates for the transition probability density of a L\'evy type processes and their applications , 2013, 1308.0310.

[32]  A. Kochubei,et al.  Analytic Methods In The Theory Of Differential And Pseudo-Differential Equations Of Parabolic Type , 2004 .

[33]  Paweł Sztonyk Transition density estimates for jump Lévy processes , 2010, 1006.5602.

[34]  V. Knopova,et al.  Intrinsic small time estimates for distribution densities of Lévy processes , 2012, 1208.1348.

[35]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[36]  K. Kaleta,et al.  Small-time sharp bounds for kernels of convolution semigroups , 2014, 1403.0912.

[37]  A. Kochubei PARABOLIC PSEUDODIFFERENTIAL EQUATIONS, HYPERSINGULAR INTEGRALS, AND MARKOV PROCESSES , 1989 .

[38]  Transition density estimates for diagonal systems of SDEs driven by cylindrical $\alpha$-stable processes , 2017, 1711.07539.

[39]  Paweł Sztonyk Estimates of Tempered Stable Densities , 2008, 0804.0113.

[40]  Richard F. Bass,et al.  Uniqueness in law for pure jump Markov processes , 1988 .

[41]  Maurice Gevrey,et al.  Sur les équations aux dérivées partielles du type parabolique (suite) , 1913 .

[42]  Hitoshi Kumano-go A caculus of fourier integral operators on Rn and the fundamental solution for an operator of hyperbolic type , 1976 .

[43]  Jean Jacod,et al.  Volatility estimators for discretely sampled Lévy processes , 2007 .

[44]  Walter Hoh,et al.  A symbolic calculus for pseudo-differential operators generating Feller semigroups , 1998 .

[45]  V. Knopova,et al.  Exact Asymptotic for Distribution Densities of Lévy Functionals , 2009, 0911.4683.

[46]  Björn Böttcher,et al.  Lévy-type processes : construction, approximation and sample path properties , 2013 .

[47]  Walter Hoh Pseudo differential operators with negative definite symbols of variable order , 2000 .

[48]  Franziska Kühn,et al.  Lévy Matters VI: Lévy-Type Processes: Moments, Construction and Heat Kernel Estimates , 2017 .

[49]  M. Ryznar,et al.  Strong Feller Property for SDEs Driven by Multiplicative Cylindrical Stable Noise , 2018, Potential Analysis.

[50]  P. Ditlevsen,et al.  Observation of α‐stable noise induced millennial climate changes from an ice‐core record , 1999 .

[51]  Zhen-Qing Chen,et al.  Heat kernels and analyticity of non-symmetric jump diffusion semigroups , 2013, 1306.5015.

[52]  C. Iwasaki The fundamental solution for pseudo-differential operators of parabolic type , 1977 .

[53]  J. Norris Appendix: probability and measure , 1997 .

[54]  Hitoshi Kumanogō,et al.  Pseudo-differential operators , 1982 .

[55]  Koji Kikuchi,et al.  On Markov process generated by pseudodifferential operator of variable order , 1997 .

[56]  Willy Feller Zur Theorie der stochastischen Prozesse , 1937 .

[57]  H. Pragarauskas,et al.  On the Cauchy problem for integro-differential operators in Sobolev classes and the martingale problem , 2011, 1112.4467.

[58]  N. Jacob Further pseudodi erential operators generating Feller semi-groups and Dirichlet forms , 1993 .

[59]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[60]  M. Krzyżański Sur la solution fondamentale de l'équation aux dérivées partielles du type parabolique , 1955 .

[61]  K. Kaleta,et al.  Estimates of transition densities and their derivatives for jump Lévy processes , 2013, 1307.1302.

[62]  Shiing-Shen Chern,et al.  Selected Papers II , 1989 .

[63]  Nobuhisa Iwasaki,et al.  Parametrix for a Degenerate Parabolic Equation and its Application to the Asymptotic Behavior of Spectral Functions for Stationary Problems , 1981 .

[64]  C. Tsutsumi The Fundamental Solution for a Degenerate Parabolic Pseudo-Differential Operator , 1974 .

[65]  H. Pragarauskas,et al.  On the martingale problem associated with nondegenerate Lévy operators , 1992 .

[66]  Eugenio Elia Levi,et al.  Sulle equazioni lineari totalmente ellittiche alle derivate parziali , 1907 .

[67]  A. Kulik Approximation in law of locally α -stable Lévy-type processes by non-linear regressions * , 2019 .

[68]  M. Ryznar,et al.  Heat kernel estimates for the fractional Laplacian with Dirichlet conditions , 2009, 0905.2626.

[69]  H. Walter Pseudo differential operators with negative definite symbols and the martingale problem , 1995 .

[70]  Björn Böttcher,et al.  Construction of time‐inhomogeneous Markov processes via evolution equations using pseudo‐differential operators , 2008 .

[71]  Pawel Sztonyk,et al.  Regularity of harmonic functions for anisotropic fractional Laplacians , 2007, 0706.0413.