Influence of complete energy sorting on the characteristics of the odd–even effect in fission-fragment element distributions

The characteristics of the odd–even effect in fission-fragment Z distributions are compared to a model based on statistical mechanics. Special care is taken for using a consistent description for the influence of pairing correlations on the nuclear level density. The variation of the odd–even effect with the mass of the fissioning nucleus and with fission asymmetry is explained by the important statistical weight of configurations where the light nascent fission fragment populates the lowest energy state of an even–even nucleus. This implies that entropy drives excitation energy and unpaired nucleons predominantly to the heavy fragment. Therefore, within our model, the odd–even effect appears as an additional signature of the recently discovered energy-sorting process in nuclear fission.

[1]  P. Möller,et al.  Fission-fragment charge yields: Variation of odd-even staggering with element number, energy, and charge asymmetry , 2014 .

[2]  A. S. Umar,et al.  Formation and dynamics of fission fragments , 2013, 1312.4669.

[3]  B. Jurado,et al.  Inconsistencies in the description of pairing effects in nuclear level densities , 2012, 1208.4709.

[4]  B. Jurado,et al.  Final excitation energy of fission fragments , 2011, 1104.2774.

[5]  A. Burger,et al.  Analysis of possible systematic errors in the Oslo method , 2011, 1211.6264.

[6]  K. Schmidt,et al.  Evidence for the predominant influence of the asymmetry degree of freedom on the even–odd structure in fission-fragment yields , 2011 .

[7]  B. Jurado,et al.  Thermodynamics of nuclei in thermal contact , 2010, 1010.0917.

[8]  B. Jurado,et al.  Entropy driven excitation energy sorting in superfluid fission dynamics. , 2009, Physical review letters.

[9]  S. Kailas,et al.  RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations , 2009 .

[10]  T. Egidy,et al.  Experimental energy-dependent nuclear spin distributions , 2009 .

[11]  A. Burger,et al.  Extraction of thermal and electromagnetic properties in Ti(45) , 2009, 0909.1414.

[12]  M. Mirea New dynamical pair breaking effect , 2009, 0907.1347.

[13]  Karen Willcox,et al.  Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.

[14]  K. Schmidt,et al.  Experimental evidence for the separability of compound-nucleus and fragment properties in fission , 2007, 0711.3967.

[15]  M. Guttormsen,et al.  Nuclear level densities and {gamma}-ray strength functions in {sup 44,45}Sc , 2007, 0706.0533.

[16]  M. Guttormsen,et al.  Microcanonical entropies and radiative strength functions of V50,51 , 2005, nucl-ex/0511054.

[17]  Dieter H. E. Gross,et al.  A New Thermodynamics from Nuclei to Stars , 2004, Entropy.

[18]  T. Egidy,et al.  Systematics of nuclear level density parameters , 2003 .

[19]  M. Hjorth-Jensen,et al.  Free energy and criticality in the nucleon pair breaking process , 2002, nucl-ex/0209013.

[20]  S. Fadeev,et al.  Pairing correlations around scission , 2001 .

[21]  S. Oberstedt,et al.  Mass and charge distributions in the very asymmetric mass region of the neutron induced fission of 238Np , 2001 .

[22]  E. Melby,et al.  Critical temperature for quenching of pair correlations , 1999, nucl-ex/9909011.

[23]  A. Junghans,et al.  Pair breaking and even–odd structure in fission-fragment yields , 2000 .

[24]  Bernd Voss,et al.  Relativistic radioactive beams: A new access to nuclear-fission studies ☆ , 2000 .

[25]  E. Melby,et al.  Energy shifted level densities in rare earth region , 1999, nucl-ex/9910018.

[26]  S. Oberstedt,et al.  Mass and charge distributions in the very asymmetric thermal neutron induced fission of the odd-Z nucleus 242mAm , 1999 .

[27]  M. Jong,et al.  Odd-even effects observed in the fission of nuclei with unpaired protons , 1998 .

[28]  M. Asghar,et al.  The nature of dynamics of the last stages of the fission process , 1998 .

[29]  W. Myers,et al.  The congruence energy: a contribution to nuclear masses, deformation energies and fission barriers , 1997 .

[30]  H. Clerc,et al.  Cold fission of 233U(nth, f)☆ , 1994 .

[31]  F. Hambsch,et al.  The positive odd-even effects observed in cold fragmentation — are they real? , 1993 .

[32]  Cyriel Wagemans,et al.  The Nuclear Fission Process , 1991 .

[33]  K.-H. Schmidt,et al.  A Reexamination of the abrasion - ablation model for the description of the nuclear fragmentation reaction , 1991 .

[34]  J. Bocquet,et al.  Mass, energy and nuclear charge distribution of fission fragments , 1989 .

[35]  Müller,et al.  Fission fragment properties in fast-neutron-induced fission of 237Np. , 1986, Physical review. C, Nuclear physics.

[36]  M. Asghar,et al.  SADDLE-TO-SCISSION LANDSCAPE IN FISSION : EXPERIMENTS AND THEORIES , 1984 .

[37]  A. Poskanzer,et al.  Rb and Cs Isotopic Cross Sections from 40-60-MeV-Proton Fission of U 238 , Th 232 , and U 235 , 1972 .

[38]  W. Greiner,et al.  Asymptotically correct shell model for asymmetric fission , 1971 .

[39]  H. Schmitt,et al.  Potential energy surfaces for heavy nuclei in the two-center model , 1971 .

[40]  V. Strutinsky,et al.  “Shells” in deformed nuclei , 1968 .

[41]  Eugene P. Wigner,et al.  The transition state method , 1938 .