04 12 11 9 v 1 1 2 D ec 2 00 4 Some remarks on Gopakumar-Vafa invariants
暂无分享,去创建一个
We show that Gopakumar-Vafa (GV) invariants can be expressed in terms of the cohomology ring of moduli space of D-branes without reference to the (sl2)L ⊕ (sl2)R action.
[1] L. Migliorini,et al. The Hodge theory of algebraic maps , 2003, math/0306030.
[2] A. Takahashi,et al. Relative Lefschetz action and BPS state counting , 2001, math/0105148.
[3] D. Huybrechts,et al. The geometry of moduli spaces of sheaves , 1997 .
[4] G. Segal,et al. The cohomology of the space of magnetic monopoles , 1996 .
[5] J. Cheeger,et al. L2-cohomology and intersection homology of singular algebraic-varieties , 1982 .