Metric temporal logic revisited

We introduce a new way of defining metric temporal logic over the continuous real model of time. The semantics refer to a single universal clock in order to impose metric constraints to any desired precision. Furthermore, the expression of any non-metric aspects can correctly utilise the full power of continuous time temporal logic. Syntactic constructs afford the convenient succinct expression of many useful and typical constraints including some interesting requirements for regular occurrences. A decision procedure is provided via a simple translation into an existing non-metric temporal logic and this gives a workable complexity and the possibility of automated reasoning. There are advantages in expressiveness, naturalness, generality and amenability to reasoning techniques over the existing metric temporal logics. Combining purely continuous with adequate metric aspects in one language makes the logic very suitable for dealing with hybrid systems.

[1]  Mark Reynolds,et al.  A Tableau for Until and Since over Linear Time , 2011, 2011 Eighteenth International Symposium on Temporal Representation and Reasoning.

[2]  Alexander Moshe Rabinovich Complexity of metric temporal logics with counting and the Pnueli modalities , 2010, Theor. Comput. Sci..

[3]  Ron Koymans,et al.  Specifying real-time properties with metric temporal logic , 1990, Real-Time Systems.

[4]  Dejan Nickovic,et al.  From Mtl to Deterministic Timed Automata , 2010, FORMATS.

[5]  Thomas A. Henzinger,et al.  What Good Are Digital Clocks? , 1992, ICALP.

[6]  Thomas Wilke,et al.  Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata , 1994, FTRTFT.

[7]  Mark Reynolds Metric temporal reasoning with less than two clocks , 2010, J. Appl. Non Class. Logics.

[8]  Dejan Nickovic,et al.  From MITL to Timed Automata , 2006, FORMATS.

[9]  Zohar Manna,et al.  Temporal verification of reactive systems - safety , 1995 .

[10]  Mark Reynolds The complexity of temporal logic over the reals , 2010, Ann. Pure Appl. Log..

[11]  Mark Reynolds Dense Time Reasoning via Mosaics , 2009, 2009 16th International Symposium on Temporal Representation and Reasoning.

[12]  Alexander Moshe Rabinovich Complexity of Metric Temporal Logics with Counting and the Pnueli Modalities , 2008, FORMATS.

[13]  Joël Ouaknine,et al.  On Expressiveness and Complexity in Real-Time Model Checking , 2008, ICALP.

[14]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[15]  Carlo A. Furia,et al.  MTL with Bounded Variability: Decidability and Complexity , 2008, FORMATS.

[16]  Thomas A. Henzinger,et al.  Robust Timed Automata , 1997, HART.

[17]  Mark Reynolds,et al.  A Tableau for Temporal Logic over the Reals , 2014, Advances in Modal Logic.

[18]  Mark Reynolds,et al.  The complexity of the temporal logic with "until" over general linear time , 2003, J. Comput. Syst. Sci..

[19]  Maarten Marx,et al.  The Mosaic Method for Temporal Logics , 2000, TABLEAUX.

[20]  Angelika Mueller Formal Modeling And Analysis Of Timed Systems , 2016 .

[21]  Jonathan S. Ostroff,et al.  Temporal logic for real-time systems , 1989 .

[22]  Dov M. Gabbay,et al.  An Axiomitization of the Temporal Logic with Until and Since over the Real Numbers , 1990, J. Log. Comput..

[23]  KoymansRon Specifying real-time properties with metric temporal logic , 1990 .

[24]  Yoram Hirshfeld,et al.  An Expressive Temporal Logic for Real Time , 2006, MFCS.

[25]  Thomas A. Henzinger,et al.  Real-Time Logics: Complexity and Expressiveness , 1993, Inf. Comput..

[26]  Joël Ouaknine,et al.  On the decidability of metric temporal logic , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[27]  Zhou Chaochen,et al.  Duration Calculus: A Formal Approach to Real-Time Systems , 2004 .

[28]  S. Fauve,et al.  Behavior of one inelastic ball bouncing repeatedly off the ground , 1998 .

[29]  Marc Geilen,et al.  Real-time property preservation in approximations of timed systems , 2003, First ACM and IEEE International Conference on Formal Methods and Models for Co-Design, 2003. MEMOCODE '03. Proceedings..

[30]  Claude Jard,et al.  Proceedings of the 6th international conference on Formal Modeling and Analysis of Timed Systems , 2008 .

[31]  Thomas A. Henzinger,et al.  Logics and Models of Real Time: A Survey , 1991, REX Workshop.

[32]  Mark Reynolds,et al.  An Efficient Tableau for Linear Time Temporal Logic , 2013, Australasian Conference on Artificial Intelligence.

[33]  Zohar Manna,et al.  Temporal Verification of Simulation and Refinement , 1993, REX School/Symposium.

[34]  Yoram Hirshfeld,et al.  A Framework for Decidable Metrical Logics , 1999, ICALP.

[35]  Alexander Moshe Rabinovich,et al.  On the Decidability of Continuous Time Specification Formalisms , 1998, J. Log. Comput..

[36]  Christel Baier,et al.  When Are Timed Automata Determinizable? , 2009, ICALP.

[37]  Matteo Pradella,et al.  Model checking temporal metric specifications with Trio2Promela , 2007, FSEN'07.

[38]  Mark Reynolds A New Metric Temporal Logic for Hybrid Systems , 2013, 2013 20th International Symposium on Temporal Representation and Reasoning.

[39]  Thomas A. Henzinger,et al.  The benefits of relaxing punctuality , 1991, JACM.

[40]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[41]  Joël Ouaknine,et al.  Some Recent Results in Metric Temporal Logic , 2008, FORMATS.

[42]  Chaochen Zhou,et al.  Duration Calculus, a Logical Approach to Real-Time Systems , 1998, AMAST.

[43]  Dov M. Gabbay,et al.  Temporal Logic: Mathematical Foundations and Computational Aspects: Volume 2 , 1994 .

[44]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[45]  Thomas A. Henzinger,et al.  A really temporal logic , 1994, JACM.

[46]  John P. Burgess,et al.  The decision problem for linear temporal logic , 1985, Notre Dame J. Formal Log..

[47]  Mark Reynolds,et al.  An axiomatization for until and since over the reals without the IRR rule , 1992, Stud Logica.

[48]  Deepak D'Souza,et al.  On the expressiveness of MTL in the pointwise and continuous semantics , 2007, International Journal on Software Tools for Technology Transfer.

[49]  Yoram Hirshfeld,et al.  Logics for Real Time: Decidability and Complexity , 2004, Fundam. Informaticae.

[50]  Mark Alexander Reynolds,et al.  A tableau for general linear temporal logic , 2013, J. Log. Comput..

[51]  Patricia Bouyer,et al.  On the expressiveness of TPTL and MTL , 2010, Inf. Comput..

[52]  Marcello M. Bersani,et al.  A tool for deciding the satisfiability of continuous-time metric temporal logic , 2013, 2013 20th International Symposium on Temporal Representation and Reasoning.

[53]  A. Nerode,et al.  Logics for hybrid systems , 2000, Proceedings of the IEEE.

[54]  Carlo A. Furia,et al.  On the Expressiveness of MTL Variants over Dense Time , 2007, FORMATS.