A stochastic generative model of the World Trade Network

The World Trade Network (WTN) is a network of exchange flows among countries whose topological and statistical properties are a valuable source of information. Degree and strength (weighted degree) are key magnitudes to understand its structure and generative mechanisms. In this work, we describe a stochastic model that yields synthetic networks that closely mimic the properties of annual empirical data. The model combines two popular mechanisms of network generation: preferential attachment and multiplicative process. Agreement between empirical and synthetic networks is checked using the available series from 1962 to 2017.

[1]  G. Gaulier,et al.  BACI: International Trade Database at the Product-Level (the 1994-2007 Version) , 2009 .

[2]  M. A. Muñoz,et al.  Scale-free networks from varying vertex intrinsic fitness. , 2002, Physical review letters.

[3]  Michael W. Deem,et al.  Structure and Response in the World Trade Network , 2010, Physical review letters.

[4]  Marián Boguñá,et al.  Extracting the multiscale backbone of complex weighted networks , 2009, Proceedings of the National Academy of Sciences.

[5]  César A. Hidalgo,et al.  The Economic Complexity Observatory: An Analytical Tool for Understanding the Dynamics of Economic Development , 2011, Scalable Integration of Analytics and Visualization.

[6]  Guido Caldarelli,et al.  A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy , 2011, PloS one.

[7]  M. Kalecki,et al.  On the Gibrat Distribution , 1945 .

[8]  Santo Fortunato,et al.  Information filtering in complex weighted networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Diego Garlaschelli,et al.  A GDP-driven model for the binary and weighted structure of the International Trade Network , 2014 .

[10]  K. Kaski,et al.  The International Trade Network: weighted network analysis and modelling , 2007, 0707.4343.

[11]  Giorgio Fagiolo,et al.  Null models of economic networks: the case of the world trade web , 2011, 1112.2895.

[12]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[13]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[14]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[15]  Aaron Clauset,et al.  Scale-free networks are rare , 2018, Nature Communications.

[16]  Javier Reyes,et al.  The architecture of globalization: a network approach to international economic integration , 2006 .

[17]  L. Amaral,et al.  Scaling behaviour in the growth of companies , 1996, Nature.

[18]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[19]  Guido Caldarelli,et al.  Data Science and Complex Networks - Real Case Studies with Python , 2016 .

[20]  J. Bergstrand The Gravity Equation in International Trade: Some Microeconomic Foundations and Empirical Evidence , 1985 .

[21]  H. Stanley,et al.  The growth of business firms: theoretical framework and empirical evidence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  H. A. Simon,et al.  Skew Distributions and the Size of Business Firms , 1977 .

[23]  D. Garlaschelli,et al.  Structure and evolution of the world trade network , 2005, physics/0502066.

[24]  Enrico Santarelli,et al.  Gibrat's Law: Are the Services Different? , 2004 .

[25]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[26]  Giorgio Fagiolo,et al.  World-trade web: topological properties, dynamics, and evolution. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Michael D. Ward,et al.  Gravity's Rainbow: A dynamic latent space model for the world trade network , 2013, Network Science.

[28]  Giorgio Fagiolo,et al.  Multinetwork of international trade: a commodity-specific analysis. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Andrea Gabrielli,et al.  Randomizing bipartite networks: the case of the World Trade Web , 2015, Scientific Reports.

[30]  T. Mizuno,et al.  Firm Growth Function and Extended-Gibrat’s Property , 2016 .

[31]  Yoshi Fujiwara,et al.  Do Pareto–Zipf and Gibrat laws hold true? An analysis with European firms , 2004 .

[32]  J. Kapteyn Skew frequency curves in biology- and statistics , 1918, Zeitschrift für induktive Abstammungs- und Vererbungslehre.

[33]  Javier Galeano,et al.  Bipartite networks provide new insights on international trade markets , 2012, Networks Heterog. Media.

[34]  Zu-Guo Yu,et al.  Fractal and multifractal analyses of bipartite networks , 2017, Scientific Reports.

[35]  Jordi Bascompte,et al.  Build-up mechanisms determining the topology of mutualistic networks. , 2007, Journal of theoretical biology.

[36]  L. Tajoli,et al.  The World Trade Network , 2011 .

[37]  L. Tajoli,et al.  Network Analysis of World Trade using the BACI-CEPII Dataset , 2014 .

[38]  E. Santarelli,et al.  Gibrat's Law and the Firm Size / Firm Growth Relationship in Italian Services , 2002 .

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[41]  G. Horsnell Skew distributions and the sizes of business firms: Yuji IJIRI and Herbert A. SIMON North-Holland, Amsterdam, 1977, xi + 231 pages, US $ 33.25, Dfl. 75.00 , 1979 .

[42]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Tim Kastelle Generative mechanisms of the World Trade Web , 2009 .

[44]  J. Aitchison,et al.  The lognormal distribution : with special reference to its uses in economics , 1957 .

[45]  Hao Liao,et al.  A Comparative Analysis of the Predictive Abilities of Economic Complexity Metrics Using International Trade Network , 2018, Complex..

[46]  Marián Boguñá,et al.  Topology of the world trade web. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Edwin Mansfield,et al.  ENTRY, GIBRAT'S LAW, INNOVATION, AND THE GROWTH OF FIRMS , 1962 .