Induced Ti magnetization at La0.7Sr0.3MnO3 and BaTiO3 interfaces

In artificial multiferroics hybrids consisting of ferromagnetic La0.7Sr0.3MnO3 (LSMO) and ferroelectric BaTiO3 epitaxial layers, net Ti moments are found from polarized resonant soft x-ray reflectivity and absorption. The Ti dichroic reflectivity follows the Mn signal during the magnetization reversal, indicating exchange coupling between the Ti and Mn ions. However, the Ti dichroic reflectivity shows stronger temperature dependence than the Mn dichroic signal. Besides a reduced ferromagnetic exchange coupling in the interfacial LSMO layer, this may also be attributed to a weak Ti-Mn exchange coupling that is insufficient to overcome the thermal energy at elevated temperatures.

[1]  G. M. De Luca,et al.  Origin of interface magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures. , 2013, Physical review letters.

[2]  U Zeitler,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[3]  S. Pennycook,et al.  Coupling of superconductors through a half-metallic ferromagnet : evidence for a long-range proximity effect , 2004 .

[4]  A. Millis,et al.  Colloquium: Emergent properties in plane view: Strong correlations at oxide interfaces , 2014 .

[5]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[6]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[7]  S. May,et al.  Magnetic Oxide Heterostructures , 2014 .

[8]  D. Muller,et al.  Visualizing short-range charge transfer at the interfaces between ferromagnetic and superconducting oxides , 2013, Nature Communications.

[9]  C. Ahn,et al.  Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O{3}/La{0.8}Sr{0.2}MnO{3} Multiferroic heterostructures. , 2010, Physical review letters.

[10]  J. Santamaria,et al.  INDUCED MAGNETISM AT OXIDE INTERFACES , 2013 .

[11]  A Gloter,et al.  Interface-induced room-temperature multiferroicity in BaTiO₃. , 2011, Nature materials.

[12]  J. Santamaria,et al.  Ferromagnetic/superconducting proximity effect in La_(0.7)Ca_(0.3)MnO_(3)/YBa_(2)Cu_(3)O_(7-δ) superlattices , 2003 .

[13]  Shufeng Zhang,et al.  Reversible control of Co magnetism by voltage-induced oxidation. , 2014, Physical review letters.

[14]  H. Habermeier,et al.  Orbital Reconstruction and Covalent Bonding at an Oxide Interface , 2007, Science.

[15]  E. Tsymbal,et al.  Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces , 2012 .

[16]  E. Tsymbal,et al.  Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. , 2013, Nature materials.

[17]  A. Fert,et al.  Tunnel junctions with multiferroic barriers. , 2007, Nature materials.

[18]  Chicago,et al.  Nanoscale suppression of magnetization at atomically assembled manganite interfaces : XMCD and XRMS measurements , 2007 .

[19]  S. Pennycook,et al.  Electronic and magnetic reconstructions in La0.7Sr0.3MnO3/SrTiO3 heterostructures: a case of enhanced interlayer coupling controlled by the interface. , 2011, Physical review letters.

[20]  Thole,et al.  X-ray circular dichroism and local magnetic fields. , 1993, Physical review letters.

[21]  J. Eckstein,et al.  Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices , 2014, Nature Communications.

[22]  Vincent Garcia,et al.  Magnetoelectric Devices for Spintronics , 2014 .

[23]  Philippe Ghosez,et al.  Interface Physics in Complex Oxide Heterostructures , 2011 .

[24]  Z Sefrioui,et al.  Emergent spin filter at the interface between ferromagnetic and insulating layered oxides. , 2013, Physical review letters.

[25]  Vincent Garcia,et al.  Ferroelectric and multiferroic tunnel junctions , 2012 .

[26]  X. Ke,et al.  Interfacial magnetism in complex oxide heterostructures probed by neutrons and x-rays , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  Suppressed magnetization at the surfaces and interfaces of ferromagnetic metallic manganites. , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  C. Batista,et al.  Tunable magnetic interaction at the atomic scale in oxide heterostructures. , 2010, Physical review letters.

[29]  Chen,et al.  Dichroic interference effects in circularly polarized soft-x-ray resonant magnetic scattering. , 1994, Physical review. B, Condensed matter.

[30]  T. Venkatesan,et al.  Magnetic Properties at Surface Boundary of a Half-Metallic Ferromagnet La 0.7 Sr 0.3 MnO 3 , 1998 .

[31]  N. Nemes,et al.  Effect of interface-induced exchange fields on cuprate-manganite spin switches. , 2012, Physical review letters.

[32]  M. J. Lee,et al.  Interface ferromagnetism and orbital reconstruction in BiFeO3-La(0.7)Sr(0.3)MnO3 heterostructures. , 2010, Physical review letters.

[33]  R. Winarski,et al.  A unique polarized x-ray facility at the Advanced Photon Source , 2002 .