Symmetry Groupoids and Admissible Vector Fields for Coupled Cell Networks
暂无分享,去创建一个
[1] D. Luna. Fonctions différentiables invariantes sous l'opération d'un groupe réductif , 1976 .
[2] M. Golubitsky,et al. Singularities and Groups in Bifurcation Theory: Volume I , 1984 .
[3] Ronald Brown. From Groups to Groupoids: a Brief Survey , 1987 .
[4] Theodor Bröcker,et al. Differentiable Germs and Catastrophes , 1975 .
[5] Marcus Pivato,et al. Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks , 2003, SIAM J. Appl. Dyn. Syst..
[6] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[7] Pascal Van Hentenryck,et al. Differentiable Invariants , 2006, CP.
[8] M. Golubitsky,et al. Singularities and groups in bifurcation theory , 1985 .
[9] P. J. Higgins. Notes on categories and groupoids , 1971 .
[10] M. Golubitsky,et al. The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space , 2002 .
[11] P. M. Neumann,et al. Groups and Geometry , 1994 .
[12] M. Golubitsky,et al. Coupled cells with internal symmetry: II. Direct products , 1996 .
[13] M. Golubitsky,et al. Patterns of Oscillation in Coupled Cell Systems , 2002 .
[14] Gerald W. Schwarz. SMOOTH FUNCTIONS INVARIANT UNDER THE ACTION OF A COMPACT LIE GROUP , 1975 .
[15] Peter Ashwin,et al. THE SYMMETRY PERSPECTIVE: FROM EQUILIBRIUM TO CHAOS IN PHASE SPACE AND PHYSICAL SPACE (Progress in Mathematics 200) , 2003 .