On the Total Variation Dictionary Model

<para> The goal of this paper is to provide a theoretical study of a total variation (TV) dictionary model. Based on the properties of convex analysis and bounded variation functions, the existence of solutions of the TV dictionary model is proved. We then show that the dual form of the model can be given by the minimization of the sum of the <formula formulatype="inline"><tex Notation="TeX">$l^1$</tex> </formula>-norm of the dual solution and the Bregman distance between the curvature of the primal solution and the subdifferential of TV norm of the dual solution. This theoretical result suggests that the dictionary must represent sparsely the curvatures of solution image in order to obtain a better denoising performance. </para>

[1]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[2]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[3]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[4]  Pierre Vandergheynst,et al.  MoTIF: An Efficient Algorithm for Learning Translation Invariant Dictionaries , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[5]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[6]  François Malgouyres,et al.  Minimizing the total variation under a general convex constraint for image restoration , 2002, IEEE Trans. Image Process..

[7]  A. Chambolle Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.

[8]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[9]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[10]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[11]  S. Lintner,et al.  Solving a variational image restoration model which involves L∞ constraints , 2004 .

[12]  Seizaburo Niitsuma,et al.  Edge detection and curvature calculation in the visual system , 2004, Artificial Life and Robotics.

[13]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[14]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[15]  D. Donoho,et al.  Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Tieyong Zeng,et al.  Using Gabor Dictionaries in A TV - L∞Model, for Denoising , 2006, ICASSP.

[17]  A. Bruckstein,et al.  A Non-Negative and Sparse Enough Solution of an Underdetermined Linear System of Equations is Unique , 2007 .

[18]  Tieyong Zeng Incorporating known features into a total variation dictionary model for source separation , 2008, 2008 15th IEEE International Conference on Image Processing.

[19]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[20]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[21]  Tieyong Zeng,et al.  Études de Modèles Variationnels et Apprentissage de Dictionnaires , 2007 .

[22]  Michael Elad,et al.  On the Uniqueness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations , 2008, IEEE Transactions on Information Theory.

[23]  E. Cachan,et al.  Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow , 2005 .

[24]  Stanley Osher,et al.  Iterative Regularization and Nonlinear Inverse Scale Space Applied to Wavelet-Based Denoising , 2007, IEEE Transactions on Image Processing.

[25]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[26]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[27]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[28]  V. Caselles,et al.  Minimizing total variation flow , 2000, Differential and Integral Equations.

[29]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[30]  V. Caselles,et al.  Parabolic Quasilinear Equations Min-imizing Linear Growth Functionals , 2004 .

[31]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[32]  S. Mallat A wavelet tour of signal processing , 1998 .

[33]  Jesús Ildefonso Díaz Díaz,et al.  Some qualitative properties for the total variation flow , 2002 .

[34]  F. Malgouyres,et al.  Mathematical analysis of a model which combines total variation and wavelet for image restoration 1 , 2002 .

[35]  Tieyong Zeng,et al.  A Predual Proximal Point Algorithm Solving a Non Negative Basis Pursuit Denoising Model , 2009, International Journal of Computer Vision.

[36]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[37]  T. Chan,et al.  Edge-preserving and scale-dependent properties of total variation regularization , 2003 .

[38]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[39]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Michael Elad,et al.  Analysis of Basis Pursuit via Capacity Sets , 2010, ArXiv.

[41]  S. Osher,et al.  Nonlinear inverse scale space methods , 2006 .