Fixed-Order Controller Design for Polytopic Systems Using LMIs

Convex parameterization of fixed-order robust stabilizing controllers for systems with polytopic uncertainty is represented as a linear matrix inequality (LMI) using the Kalman-Yakubovich-Popov (KYP) lemma. This parameterization is a convex inner approximation of the whole nonconvex set of stabilizing controllers, and depends on the choice of a central polynomial. It is shown that, with an appropriate choice of the central polynomial, the set of all stabilizing fixed-order controllers that place the closed-loop poles of a polytopic system in a disk centered on the real axis can be outbounded with some LMIs. These LMIs can be used for robust pole placement of polytopic systems.

[1]  G. Basile,et al.  Controlled and conditioned invariant subspaces in linear system theory , 1969 .

[2]  G. Leitmann Stability without Eigenspaces in the Geometric Approach : The Regulator Problem ~ , .

[3]  Germain Garcia,et al.  Pole assignment for uncertain systems in a specified disk by output feedback , 1996, Math. Control. Signals Syst..

[4]  Denis Arzelier,et al.  Pole assignment of linear uncertain systems in a sector via a Lyapunov-type approach , 1993, IEEE Trans. Autom. Control..

[5]  Hans J. Zwart The disturbance decoupling problem with measurement feedback and stability , 1989 .

[6]  R. Takahashi,et al.  Improved optimisation approach to the robust H2/H∞ control problem for linear systems , 2005 .

[7]  J. Daafouz,et al.  Output feedback disk pole assignment for systems with positive real uncertainty , 1996, IEEE Trans. Autom. Control..

[8]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[9]  J. Schumacher,et al.  A nine-fold canonical decomposition for linear systems , 1984 .

[10]  D. Bernstein,et al.  Controller design with regional pole constraints , 1992 .

[11]  A. Morse,et al.  Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach , 1970 .

[12]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[13]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[14]  L. Jetto Strong stabilization over polytopes , 1999, IEEE Trans. Autom. Control..

[15]  Domenico Prattichizzo,et al.  Generalized Signal Decoupling Problem with Stability for Discrete-Time Systems , 2001 .

[16]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[17]  Alberto Tesi,et al.  Convexity properties of polynomials with assigned root location , 1994, IEEE Trans. Autom. Control..

[18]  Michel Malabre,et al.  Fixed poles of disturbance rejection by dynamic measurement feedback: a geometric approach , 2001, Autom..

[19]  Michel Malabre,et al.  On the fixed poles for disturbance rejection , 1997, Autom..

[20]  Bogdan Dumitrescu Parameterization of positive-real transfer functions with fixed poles , 2002 .

[21]  Bogdan Dumitrescu,et al.  Multistage IIR filter design using convex stability domains defined by positive realness , 2004, IEEE Transactions on Signal Processing.

[22]  Jang-Gyu Lee,et al.  Pole placement of uncertain discrete systems in the smallest disk by state feedback , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[23]  Andrew Bartlett,et al.  Robust Control: Systems with Uncertain Physical Parameters , 1993 .

[24]  Brian D. O. Anderson,et al.  Robust strict positive realness: characterization and construction , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[25]  D. Henrion,et al.  Overcoming non-convexity in polynomial robust control design , 2004 .

[26]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1994 .

[27]  L. Lee,et al.  Strictly positive real lemma for discrete-time descriptor systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[28]  Michael Sebek,et al.  Positive polynomials and robust stabilization with fixed-order controllers , 2003, IEEE Trans. Autom. Control..

[29]  Tsu-Tian Lee,et al.  A New Approach to Optimal Regional Pole Placement , 1997, Autom..