Quantum expanders and the quantum entropy difference problem

We define quantum expanders in a natural way. We show that under certain conditions classical expander constructions generalize to the quantum setting, and in particular so does the Lubotzky, Philips and Sarnak construction of Ramanujan expanders from Cayley graphs of the group PGL. We show that this definition is exactly what is needed for characterizing the complexity of estimating quantum entropies.

[1]  D. Spielman,et al.  Expander codes , 1996 .

[2]  John Watrous,et al.  Limits on the power of quantum statistical zero-knowledge , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[3]  Nabil Kahale,et al.  Eigenvalues and expansion of regular graphs , 1995, JACM.

[4]  John Watrous,et al.  Zero-knowledge against quantum attacks , 2005, STOC '06.

[5]  Amit Sahai,et al.  A complete promise problem for statistical zero-knowledge , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[6]  John D. Lafferty,et al.  Fast Fourier Analysis for SL2 over a Finite Field and Related Numerical Experiments , 1992, Exp. Math..

[7]  Bruce E. Sagan,et al.  The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.

[8]  Omer Reingold,et al.  Randomness Conductors and Constant-Degree Expansion Beyond the Degree / 2 Barrier , 2001 .

[9]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[10]  Ueli Maurer,et al.  On the power of quantum memory , 2005, IEEE Transactions on Information Theory.

[11]  Martin Kassabov Symmetric Groups and Expanders , 2005 .

[12]  Maria M. Klawe,et al.  Limitations on Explicit Constructions of Expanding Graphs , 1984, SIAM J. Comput..

[13]  Oded Goldreich,et al.  Tiny Families of Functions with Random Properties: A Quality-Size Trade-off for Hashing (Preliminary Version) , 1997, STOC 1994.

[14]  Martin Kassabov,et al.  Symmetric groups and expander graphs , 2005 .

[15]  G. de B. Robinson,et al.  On the Representations of the Symmetric Group , 1938 .

[16]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[17]  Avi Wigderson,et al.  Tiny Families of Functions with Random Properties: A Quality-Size Trade-off for Hashing , 1997, Electron. Colloquium Comput. Complex..

[18]  A. Nilli On the second eigenvalue of a graph , 1991 .

[19]  Amit Sahai,et al.  Can Statistical Zero Knowledge Be Made Non-interactive? or On the Relationship of SZK and NISZK , 1998, CRYPTO.

[20]  Ronen Shaltiel,et al.  Recent Developments in Explicit Constructions of Extractors , 2002, Bull. EATCS.

[21]  M. Murty Ramanujan Graphs , 1965 .

[22]  Andris Ambainis,et al.  Small Pseudo-random Families of Matrices: Derandomizing Approximate Quantum Encryption , 2004, APPROX-RANDOM.

[23]  Avi Wigderson,et al.  Randomness conductors and constant-degree lossless expanders , 2002, STOC '02.

[24]  Alexander Russell,et al.  Normal subgroup reconstruction and quantum computation using group representations , 2000, STOC '00.

[25]  Avi Wigderson,et al.  Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[26]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[27]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[28]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[29]  S. Popescu,et al.  Thermodynamics and the measure of entanglement , 1996, quant-ph/9610044.

[30]  Robert Beals,et al.  Quantum computation of Fourier transforms over symmetric groups , 1997, STOC '97.

[31]  Moshe Morgenstern,et al.  Natural bounded concentrators , 1995, Comb..

[32]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[33]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[34]  Noam Nisan,et al.  Extracting randomness: how and why. A survey , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[35]  Paul A. Dickinson,et al.  Approximate Randomization of Quantum States With Fewer Bits of Key , 2006, quant-ph/0611033.

[36]  Amit Sahai,et al.  Manipulating statistical difference , 1997, Randomization Methods in Algorithm Design.